Step |
Hyp |
Ref |
Expression |
1 |
|
doca2.h |
|- H = ( LHyp ` K ) |
2 |
|
doca2.i |
|- I = ( ( DIsoA ` K ) ` W ) |
3 |
|
doca2.n |
|- ._|_ = ( ( ocA ` K ) ` W ) |
4 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
5 |
4
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> K e. OL ) |
6 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
7 |
6 1 2
|
diadmclN |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> X e. ( Base ` K ) ) |
8 |
6 1
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
9 |
8
|
ad2antlr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> W e. ( Base ` K ) ) |
10 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
11 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
12 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
13 |
6 10 11 12
|
oldmm1 |
|- ( ( K e. OL /\ X e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) = ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) |
14 |
5 7 9 13
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) = ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) |
15 |
14
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) ( meet ` K ) W ) = ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) |
16 |
15
|
eqcomd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) = ( ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) ( meet ` K ) W ) ) |
17 |
16
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) ( meet ` K ) W ) ) ) |
18 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
19 |
18
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> K e. Lat ) |
20 |
6 11
|
latmcl |
|- ( ( K e. Lat /\ X e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( X ( meet ` K ) W ) e. ( Base ` K ) ) |
21 |
19 7 9 20
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( X ( meet ` K ) W ) e. ( Base ` K ) ) |
22 |
6 10 11 12
|
oldmm2 |
|- ( ( K e. OL /\ ( X ( meet ` K ) W ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) ( meet ` K ) W ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) |
23 |
5 21 9 22
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) ( meet ` K ) W ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) |
24 |
17 23
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) |
25 |
24
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) = ( ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) |
26 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
27 |
26
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> K e. OP ) |
28 |
6 12
|
opoccl |
|- ( ( K e. OP /\ W e. ( Base ` K ) ) -> ( ( oc ` K ) ` W ) e. ( Base ` K ) ) |
29 |
27 9 28
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( oc ` K ) ` W ) e. ( Base ` K ) ) |
30 |
6 10
|
latjass |
|- ( ( K e. Lat /\ ( ( X ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) ) ) -> ( ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) ) |
31 |
19 21 29 29 30
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) ) |
32 |
6 10
|
latjidm |
|- ( ( K e. Lat /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) ) -> ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) |
33 |
19 29 32
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) |
34 |
33
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( X ( meet ` K ) W ) ( join ` K ) ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) |
35 |
31 34
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) |
36 |
25 35
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) |
37 |
36
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) = ( ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) |
38 |
|
hloml |
|- ( K e. HL -> K e. OML ) |
39 |
38
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> K e. OML ) |
40 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
41 |
6 40 11
|
latmle2 |
|- ( ( K e. Lat /\ X e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( X ( meet ` K ) W ) ( le ` K ) W ) |
42 |
19 7 9 41
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( X ( meet ` K ) W ) ( le ` K ) W ) |
43 |
6 40 10 11 12
|
omlspjN |
|- ( ( K e. OML /\ ( ( X ( meet ` K ) W ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ ( X ( meet ` K ) W ) ( le ` K ) W ) -> ( ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) = ( X ( meet ` K ) W ) ) |
44 |
39 21 9 42 43
|
syl121anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) = ( X ( meet ` K ) W ) ) |
45 |
40 1 2
|
diadmleN |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> X ( le ` K ) W ) |
46 |
6 40 11
|
latleeqm1 |
|- ( ( K e. Lat /\ X e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( X ( le ` K ) W <-> ( X ( meet ` K ) W ) = X ) ) |
47 |
19 7 9 46
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( X ( le ` K ) W <-> ( X ( meet ` K ) W ) = X ) ) |
48 |
45 47
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( X ( meet ` K ) W ) = X ) |
49 |
37 44 48
|
3eqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> X = ( ( ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) |
50 |
49
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( I ` X ) = ( I ` ( ( ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) |
51 |
6 12
|
opoccl |
|- ( ( K e. OP /\ X e. ( Base ` K ) ) -> ( ( oc ` K ) ` X ) e. ( Base ` K ) ) |
52 |
27 7 51
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( oc ` K ) ` X ) e. ( Base ` K ) ) |
53 |
6 10
|
latjcl |
|- ( ( K e. Lat /\ ( ( oc ` K ) ` X ) e. ( Base ` K ) /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) e. ( Base ` K ) ) |
54 |
19 52 29 53
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) e. ( Base ` K ) ) |
55 |
6 11
|
latmcl |
|- ( ( K e. Lat /\ ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) ) |
56 |
19 54 9 55
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) ) |
57 |
6 40 11
|
latmle2 |
|- ( ( K e. Lat /\ ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) |
58 |
19 54 9 57
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) |
59 |
6 40 1 2
|
diaeldm |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I <-> ( ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) ) ) |
60 |
59
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I <-> ( ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) ) ) |
61 |
56 58 60
|
mpbir2and |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I ) |
62 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
63 |
10 11 12 1 62 2 3
|
diaocN |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I ) -> ( I ` ( ( ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ._|_ ` ( I ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) ) |
64 |
61 63
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( I ` ( ( ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ._|_ ` ( I ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) ) |
65 |
10 11 12 1 62 2 3
|
diaocN |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( I ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ._|_ ` ( I ` X ) ) ) |
66 |
65
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ._|_ ` ( I ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) = ( ._|_ ` ( ._|_ ` ( I ` X ) ) ) ) |
67 |
50 64 66
|
3eqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ._|_ ` ( ._|_ ` ( I ` X ) ) ) = ( I ` X ) ) |