| Step |
Hyp |
Ref |
Expression |
| 1 |
|
doca2.h |
|- H = ( LHyp ` K ) |
| 2 |
|
doca2.i |
|- I = ( ( DIsoA ` K ) ` W ) |
| 3 |
|
doca2.n |
|- ._|_ = ( ( ocA ` K ) ` W ) |
| 4 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
| 5 |
4
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> K e. OL ) |
| 6 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 7 |
6 1 2
|
diadmclN |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> X e. ( Base ` K ) ) |
| 8 |
6 1
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 9 |
8
|
ad2antlr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> W e. ( Base ` K ) ) |
| 10 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 11 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
| 12 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
| 13 |
6 10 11 12
|
oldmm1 |
|- ( ( K e. OL /\ X e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) = ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) |
| 14 |
5 7 9 13
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) = ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) |
| 15 |
14
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) ( meet ` K ) W ) = ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) |
| 16 |
15
|
eqcomd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) = ( ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) ( meet ` K ) W ) ) |
| 17 |
16
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) ( meet ` K ) W ) ) ) |
| 18 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 19 |
18
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> K e. Lat ) |
| 20 |
6 11
|
latmcl |
|- ( ( K e. Lat /\ X e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( X ( meet ` K ) W ) e. ( Base ` K ) ) |
| 21 |
19 7 9 20
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( X ( meet ` K ) W ) e. ( Base ` K ) ) |
| 22 |
6 10 11 12
|
oldmm2 |
|- ( ( K e. OL /\ ( X ( meet ` K ) W ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) ( meet ` K ) W ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) |
| 23 |
5 21 9 22
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) ( meet ` K ) W ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) |
| 24 |
17 23
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) |
| 25 |
24
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) = ( ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) |
| 26 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 27 |
26
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> K e. OP ) |
| 28 |
6 12
|
opoccl |
|- ( ( K e. OP /\ W e. ( Base ` K ) ) -> ( ( oc ` K ) ` W ) e. ( Base ` K ) ) |
| 29 |
27 9 28
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( oc ` K ) ` W ) e. ( Base ` K ) ) |
| 30 |
6 10
|
latjass |
|- ( ( K e. Lat /\ ( ( X ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) ) ) -> ( ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) ) |
| 31 |
19 21 29 29 30
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) ) |
| 32 |
6 10
|
latjidm |
|- ( ( K e. Lat /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) ) -> ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) |
| 33 |
19 29 32
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) |
| 34 |
33
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( X ( meet ` K ) W ) ( join ` K ) ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) |
| 35 |
31 34
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) |
| 36 |
25 35
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) |
| 37 |
36
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) = ( ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) |
| 38 |
|
hloml |
|- ( K e. HL -> K e. OML ) |
| 39 |
38
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> K e. OML ) |
| 40 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 41 |
6 40 11
|
latmle2 |
|- ( ( K e. Lat /\ X e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( X ( meet ` K ) W ) ( le ` K ) W ) |
| 42 |
19 7 9 41
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( X ( meet ` K ) W ) ( le ` K ) W ) |
| 43 |
6 40 10 11 12
|
omlspjN |
|- ( ( K e. OML /\ ( ( X ( meet ` K ) W ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ ( X ( meet ` K ) W ) ( le ` K ) W ) -> ( ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) = ( X ( meet ` K ) W ) ) |
| 44 |
39 21 9 42 43
|
syl121anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) = ( X ( meet ` K ) W ) ) |
| 45 |
40 1 2
|
diadmleN |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> X ( le ` K ) W ) |
| 46 |
6 40 11
|
latleeqm1 |
|- ( ( K e. Lat /\ X e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( X ( le ` K ) W <-> ( X ( meet ` K ) W ) = X ) ) |
| 47 |
19 7 9 46
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( X ( le ` K ) W <-> ( X ( meet ` K ) W ) = X ) ) |
| 48 |
45 47
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( X ( meet ` K ) W ) = X ) |
| 49 |
37 44 48
|
3eqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> X = ( ( ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) |
| 50 |
49
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( I ` X ) = ( I ` ( ( ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) |
| 51 |
6 12
|
opoccl |
|- ( ( K e. OP /\ X e. ( Base ` K ) ) -> ( ( oc ` K ) ` X ) e. ( Base ` K ) ) |
| 52 |
27 7 51
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( oc ` K ) ` X ) e. ( Base ` K ) ) |
| 53 |
6 10
|
latjcl |
|- ( ( K e. Lat /\ ( ( oc ` K ) ` X ) e. ( Base ` K ) /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) e. ( Base ` K ) ) |
| 54 |
19 52 29 53
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) e. ( Base ` K ) ) |
| 55 |
6 11
|
latmcl |
|- ( ( K e. Lat /\ ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) ) |
| 56 |
19 54 9 55
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) ) |
| 57 |
6 40 11
|
latmle2 |
|- ( ( K e. Lat /\ ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) |
| 58 |
19 54 9 57
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) |
| 59 |
6 40 1 2
|
diaeldm |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I <-> ( ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) ) ) |
| 60 |
59
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I <-> ( ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) ) ) |
| 61 |
56 58 60
|
mpbir2and |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I ) |
| 62 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
| 63 |
10 11 12 1 62 2 3
|
diaocN |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I ) -> ( I ` ( ( ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ._|_ ` ( I ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) ) |
| 64 |
61 63
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( I ` ( ( ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ._|_ ` ( I ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) ) |
| 65 |
10 11 12 1 62 2 3
|
diaocN |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( I ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ._|_ ` ( I ` X ) ) ) |
| 66 |
65
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ._|_ ` ( I ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) = ( ._|_ ` ( ._|_ ` ( I ` X ) ) ) ) |
| 67 |
50 64 66
|
3eqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ._|_ ` ( ._|_ ` ( I ` X ) ) ) = ( I ` X ) ) |