| Step | Hyp | Ref | Expression | 
						
							| 1 |  | doca2.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | doca2.i |  |-  I = ( ( DIsoA ` K ) ` W ) | 
						
							| 3 |  | doca2.n |  |-  ._|_ = ( ( ocA ` K ) ` W ) | 
						
							| 4 |  | hlol |  |-  ( K e. HL -> K e. OL ) | 
						
							| 5 | 4 | ad2antrr |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> K e. OL ) | 
						
							| 6 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 7 | 6 1 2 | diadmclN |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> X e. ( Base ` K ) ) | 
						
							| 8 | 6 1 | lhpbase |  |-  ( W e. H -> W e. ( Base ` K ) ) | 
						
							| 9 | 8 | ad2antlr |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> W e. ( Base ` K ) ) | 
						
							| 10 |  | eqid |  |-  ( join ` K ) = ( join ` K ) | 
						
							| 11 |  | eqid |  |-  ( meet ` K ) = ( meet ` K ) | 
						
							| 12 |  | eqid |  |-  ( oc ` K ) = ( oc ` K ) | 
						
							| 13 | 6 10 11 12 | oldmm1 |  |-  ( ( K e. OL /\ X e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) = ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) | 
						
							| 14 | 5 7 9 13 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) = ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) | 
						
							| 15 | 14 | oveq1d |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) ( meet ` K ) W ) = ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) | 
						
							| 16 | 15 | eqcomd |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) = ( ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) ( meet ` K ) W ) ) | 
						
							| 17 | 16 | fveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) ( meet ` K ) W ) ) ) | 
						
							| 18 |  | hllat |  |-  ( K e. HL -> K e. Lat ) | 
						
							| 19 | 18 | ad2antrr |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> K e. Lat ) | 
						
							| 20 | 6 11 | latmcl |  |-  ( ( K e. Lat /\ X e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( X ( meet ` K ) W ) e. ( Base ` K ) ) | 
						
							| 21 | 19 7 9 20 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( X ( meet ` K ) W ) e. ( Base ` K ) ) | 
						
							| 22 | 6 10 11 12 | oldmm2 |  |-  ( ( K e. OL /\ ( X ( meet ` K ) W ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) ( meet ` K ) W ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) | 
						
							| 23 | 5 21 9 22 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( X ( meet ` K ) W ) ) ( meet ` K ) W ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) | 
						
							| 24 | 17 23 | eqtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) | 
						
							| 25 | 24 | oveq1d |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) = ( ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) | 
						
							| 26 |  | hlop |  |-  ( K e. HL -> K e. OP ) | 
						
							| 27 | 26 | ad2antrr |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> K e. OP ) | 
						
							| 28 | 6 12 | opoccl |  |-  ( ( K e. OP /\ W e. ( Base ` K ) ) -> ( ( oc ` K ) ` W ) e. ( Base ` K ) ) | 
						
							| 29 | 27 9 28 | syl2anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( oc ` K ) ` W ) e. ( Base ` K ) ) | 
						
							| 30 | 6 10 | latjass |  |-  ( ( K e. Lat /\ ( ( X ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) ) ) -> ( ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) ) | 
						
							| 31 | 19 21 29 29 30 | syl13anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) ) | 
						
							| 32 | 6 10 | latjidm |  |-  ( ( K e. Lat /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) ) -> ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) | 
						
							| 33 | 19 29 32 | syl2anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( oc ` K ) ` W ) ) = ( ( oc ` K ) ` W ) ) | 
						
							| 34 | 33 | oveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( X ( meet ` K ) W ) ( join ` K ) ( ( ( oc ` K ) ` W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) | 
						
							| 35 | 31 34 | eqtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) | 
						
							| 36 | 25 35 | eqtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) = ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ) | 
						
							| 37 | 36 | oveq1d |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) = ( ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) | 
						
							| 38 |  | hloml |  |-  ( K e. HL -> K e. OML ) | 
						
							| 39 | 38 | ad2antrr |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> K e. OML ) | 
						
							| 40 |  | eqid |  |-  ( le ` K ) = ( le ` K ) | 
						
							| 41 | 6 40 11 | latmle2 |  |-  ( ( K e. Lat /\ X e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( X ( meet ` K ) W ) ( le ` K ) W ) | 
						
							| 42 | 19 7 9 41 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( X ( meet ` K ) W ) ( le ` K ) W ) | 
						
							| 43 | 6 40 10 11 12 | omlspjN |  |-  ( ( K e. OML /\ ( ( X ( meet ` K ) W ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ ( X ( meet ` K ) W ) ( le ` K ) W ) -> ( ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) = ( X ( meet ` K ) W ) ) | 
						
							| 44 | 39 21 9 42 43 | syl121anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( X ( meet ` K ) W ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) = ( X ( meet ` K ) W ) ) | 
						
							| 45 | 40 1 2 | diadmleN |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> X ( le ` K ) W ) | 
						
							| 46 | 6 40 11 | latleeqm1 |  |-  ( ( K e. Lat /\ X e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( X ( le ` K ) W <-> ( X ( meet ` K ) W ) = X ) ) | 
						
							| 47 | 19 7 9 46 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( X ( le ` K ) W <-> ( X ( meet ` K ) W ) = X ) ) | 
						
							| 48 | 45 47 | mpbid |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( X ( meet ` K ) W ) = X ) | 
						
							| 49 | 37 44 48 | 3eqtrrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> X = ( ( ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) | 
						
							| 50 | 49 | fveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( I ` X ) = ( I ` ( ( ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) | 
						
							| 51 | 6 12 | opoccl |  |-  ( ( K e. OP /\ X e. ( Base ` K ) ) -> ( ( oc ` K ) ` X ) e. ( Base ` K ) ) | 
						
							| 52 | 27 7 51 | syl2anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( oc ` K ) ` X ) e. ( Base ` K ) ) | 
						
							| 53 | 6 10 | latjcl |  |-  ( ( K e. Lat /\ ( ( oc ` K ) ` X ) e. ( Base ` K ) /\ ( ( oc ` K ) ` W ) e. ( Base ` K ) ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) e. ( Base ` K ) ) | 
						
							| 54 | 19 52 29 53 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) e. ( Base ` K ) ) | 
						
							| 55 | 6 11 | latmcl |  |-  ( ( K e. Lat /\ ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) ) | 
						
							| 56 | 19 54 9 55 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) ) | 
						
							| 57 | 6 40 11 | latmle2 |  |-  ( ( K e. Lat /\ ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) | 
						
							| 58 | 19 54 9 57 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) | 
						
							| 59 | 6 40 1 2 | diaeldm |  |-  ( ( K e. HL /\ W e. H ) -> ( ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I <-> ( ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) ) ) | 
						
							| 60 | 59 | adantr |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I <-> ( ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. ( Base ` K ) /\ ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ( le ` K ) W ) ) ) | 
						
							| 61 | 56 58 60 | mpbir2and |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I ) | 
						
							| 62 |  | eqid |  |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) | 
						
							| 63 | 10 11 12 1 62 2 3 | diaocN |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) e. dom I ) -> ( I ` ( ( ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ._|_ ` ( I ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) ) | 
						
							| 64 | 61 63 | syldan |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( I ` ( ( ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ._|_ ` ( I ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) ) | 
						
							| 65 | 10 11 12 1 62 2 3 | diaocN |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( I ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) = ( ._|_ ` ( I ` X ) ) ) | 
						
							| 66 | 65 | fveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ._|_ ` ( I ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` W ) ) ( meet ` K ) W ) ) ) = ( ._|_ ` ( ._|_ ` ( I ` X ) ) ) ) | 
						
							| 67 | 50 64 66 | 3eqtrrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. dom I ) -> ( ._|_ ` ( ._|_ ` ( I ` X ) ) ) = ( I ` X ) ) |