| Step | Hyp | Ref | Expression | 
						
							| 1 |  | doca2.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | doca2.i | ⊢ 𝐼  =  ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | doca2.n | ⊢  ⊥   =  ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | hlol | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OL ) | 
						
							| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  𝐾  ∈  OL ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 7 | 6 1 2 | diadmclN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  𝑋  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 8 | 6 1 | lhpbase | ⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 9 | 8 | ad2antlr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 10 |  | eqid | ⊢ ( join ‘ 𝐾 )  =  ( join ‘ 𝐾 ) | 
						
							| 11 |  | eqid | ⊢ ( meet ‘ 𝐾 )  =  ( meet ‘ 𝐾 ) | 
						
							| 12 |  | eqid | ⊢ ( oc ‘ 𝐾 )  =  ( oc ‘ 𝐾 ) | 
						
							| 13 | 6 10 11 12 | oldmm1 | ⊢ ( ( 𝐾  ∈  OL  ∧  𝑋  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 14 | 5 7 9 13 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  =  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) | 
						
							| 16 | 15 | eqcomd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  =  ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  =  ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) | 
						
							| 18 |  | hllat | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat ) | 
						
							| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  𝐾  ∈  Lat ) | 
						
							| 20 | 6 11 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 21 | 19 7 9 20 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 22 | 6 10 11 12 | oldmm2 | ⊢ ( ( 𝐾  ∈  OL  ∧  ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  =  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 23 | 5 21 9 22 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  =  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 24 | 17 23 | eqtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  =  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 26 |  | hlop | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP ) | 
						
							| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  𝐾  ∈  OP ) | 
						
							| 28 | 6 12 | opoccl | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 29 | 27 9 28 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 30 | 6 10 | latjass | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ( join ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 31 | 19 21 29 29 30 | syl13anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ( join ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 32 | 6 10 | latjidm | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 33 | 19 29 32 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 34 | 33 | oveq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ( join ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) )  =  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 35 | 31 34 | eqtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 36 | 25 35 | eqtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 37 | 36 | oveq1d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  =  ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) | 
						
							| 38 |  | hloml | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OML ) | 
						
							| 39 | 38 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  𝐾  ∈  OML ) | 
						
							| 40 |  | eqid | ⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 ) | 
						
							| 41 | 6 40 11 | latmle2 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) | 
						
							| 42 | 19 7 9 41 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) | 
						
							| 43 | 6 40 10 11 12 | omlspjN | ⊢ ( ( 𝐾  ∈  OML  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  ∧  ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 )  →  ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  =  ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) | 
						
							| 44 | 39 21 9 42 43 | syl121anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  =  ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) | 
						
							| 45 | 40 1 2 | diadmleN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  𝑋 ( le ‘ 𝐾 ) 𝑊 ) | 
						
							| 46 | 6 40 11 | latleeqm1 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑋 ( le ‘ 𝐾 ) 𝑊  ↔  ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 )  =  𝑋 ) ) | 
						
							| 47 | 19 7 9 46 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( 𝑋 ( le ‘ 𝐾 ) 𝑊  ↔  ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 )  =  𝑋 ) ) | 
						
							| 48 | 45 47 | mpbid | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 )  =  𝑋 ) | 
						
							| 49 | 37 44 48 | 3eqtrrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  𝑋  =  ( ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) | 
						
							| 50 | 49 | fveq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( 𝐼 ‘ 𝑋 )  =  ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) | 
						
							| 51 | 6 12 | opoccl | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  ( Base ‘ 𝐾 ) )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 52 | 27 7 51 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 53 | 6 10 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 54 | 19 52 29 53 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 55 | 6 11 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 56 | 19 54 9 55 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 57 | 6 40 11 | latmle2 | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) | 
						
							| 58 | 19 54 9 57 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) | 
						
							| 59 | 6 40 1 2 | diaeldm | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  dom  𝐼  ↔  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) ) ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  dom  𝐼  ↔  ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) ) ) | 
						
							| 61 | 56 58 60 | mpbir2and | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  dom  𝐼 ) | 
						
							| 62 |  | eqid | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 63 | 10 11 12 1 62 2 3 | diaocN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 )  ∈  dom  𝐼 )  →  ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  =  (  ⊥  ‘ ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) | 
						
							| 64 | 61 63 | syldan | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  =  (  ⊥  ‘ ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) | 
						
							| 65 | 10 11 12 1 62 2 3 | diaocN | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )  =  (  ⊥  ‘ ( 𝐼 ‘ 𝑋 ) ) ) | 
						
							| 66 | 65 | fveq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  (  ⊥  ‘ ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) )  =  (  ⊥  ‘ (  ⊥  ‘ ( 𝐼 ‘ 𝑋 ) ) ) ) | 
						
							| 67 | 50 64 66 | 3eqtrrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  dom  𝐼 )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝐼 ‘ 𝑋 ) ) )  =  ( 𝐼 ‘ 𝑋 ) ) |