Metamath Proof Explorer


Theorem doca3N

Description: Double orthocomplement of partial isomorphism A. (Contributed by NM, 17-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses doca2.h 𝐻 = ( LHyp ‘ 𝐾 )
doca2.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
doca2.n = ( ( ocA ‘ 𝐾 ) ‘ 𝑊 )
Assertion doca3N ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ‘ ( 𝑋 ) ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 doca2.h 𝐻 = ( LHyp ‘ 𝐾 )
2 doca2.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
3 doca2.n = ( ( ocA ‘ 𝐾 ) ‘ 𝑊 )
4 1 2 diacnvclN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼𝑋 ) ∈ dom 𝐼 )
5 1 2 3 doca2N ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐼𝑋 ) ∈ dom 𝐼 ) → ( ‘ ( ‘ ( 𝐼 ‘ ( 𝐼𝑋 ) ) ) ) = ( 𝐼 ‘ ( 𝐼𝑋 ) ) )
6 4 5 syldan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ‘ ( ‘ ( 𝐼 ‘ ( 𝐼𝑋 ) ) ) ) = ( 𝐼 ‘ ( 𝐼𝑋 ) ) )
7 1 2 diaf11N ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐼 : dom 𝐼1-1-onto→ ran 𝐼 )
8 f1ocnvfv2 ( ( 𝐼 : dom 𝐼1-1-onto→ ran 𝐼𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( 𝐼𝑋 ) ) = 𝑋 )
9 7 8 sylan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( 𝐼𝑋 ) ) = 𝑋 )
10 9 fveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ‘ ( 𝐼 ‘ ( 𝐼𝑋 ) ) ) = ( 𝑋 ) )
11 10 fveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ‘ ( ‘ ( 𝐼 ‘ ( 𝐼𝑋 ) ) ) ) = ( ‘ ( 𝑋 ) ) )
12 6 11 9 3eqtr3d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ‘ ( 𝑋 ) ) = 𝑋 )