| Step |
Hyp |
Ref |
Expression |
| 1 |
|
doca2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
doca2.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
doca2.n |
⊢ ⊥ = ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
1 2
|
diacnvclN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑋 ) ∈ dom 𝐼 ) |
| 5 |
1 2 3
|
doca2N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ◡ 𝐼 ‘ 𝑋 ) ∈ dom 𝐼 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) |
| 6 |
4 5
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) |
| 7 |
1 2
|
diaf11N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 : dom 𝐼 –1-1-onto→ ran 𝐼 ) |
| 8 |
|
f1ocnvfv2 |
⊢ ( ( 𝐼 : dom 𝐼 –1-1-onto→ ran 𝐼 ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
| 9 |
7 8
|
sylan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
| 10 |
9
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ⊥ ‘ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) = ( ⊥ ‘ 𝑋 ) ) |
| 11 |
10
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
| 12 |
6 11 9
|
3eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |