Metamath Proof Explorer


Theorem diarnN

Description: Partial isomorphism A maps onto the set of all closed subspaces of partial vector space A. Part of Lemma M of Crawley p. 121 line 12, with closed subspaces rather than subspaces. (Contributed by NM, 17-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dvadia.h H=LHypK
dvadia.u U=DVecAKW
dvadia.i I=DIsoAKW
dvadia.n ˙=ocAKW
dvadia.s S=LSubSpU
Assertion diarnN KHLWHranI=xS|˙˙x=x

Proof

Step Hyp Ref Expression
1 dvadia.h H=LHypK
2 dvadia.u U=DVecAKW
3 dvadia.i I=DIsoAKW
4 dvadia.n ˙=ocAKW
5 dvadia.s S=LSubSpU
6 1 2 3 5 diasslssN KHLWHranIS
7 sseqin2 ranISSranI=ranI
8 6 7 sylib KHLWHSranI=ranI
9 1 3 4 doca3N KHLWHxranI˙˙x=x
10 9 ex KHLWHxranI˙˙x=x
11 10 adantr KHLWHxSxranI˙˙x=x
12 1 2 3 4 5 dvadiaN KHLWHxS˙˙x=xxranI
13 12 expr KHLWHxS˙˙x=xxranI
14 11 13 impbid KHLWHxSxranI˙˙x=x
15 14 rabbi2dva KHLWHSranI=xS|˙˙x=x
16 8 15 eqtr3d KHLWHranI=xS|˙˙x=x