Metamath Proof Explorer


Theorem diasslssN

Description: The partial isomorphism A maps to subspaces of partial vector space A. (Contributed by NM, 17-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses diasslss.h H=LHypK
diasslss.u U=DVecAKW
diasslss.i I=DIsoAKW
diasslss.s S=LSubSpU
Assertion diasslssN KHLWHranIS

Proof

Step Hyp Ref Expression
1 diasslss.h H=LHypK
2 diasslss.u U=DVecAKW
3 diasslss.i I=DIsoAKW
4 diasslss.s S=LSubSpU
5 1 3 diaf11N KHLWHI:domI1-1 ontoranI
6 f1ocnvfv2 I:domI1-1 ontoranIxranIII-1x=x
7 5 6 sylan KHLWHxranIII-1x=x
8 1 3 diacnvclN KHLWHxranII-1xdomI
9 eqid BaseK=BaseK
10 eqid K=K
11 9 10 1 3 diaeldm KHLWHI-1xdomII-1xBaseKI-1xKW
12 11 adantr KHLWHxranII-1xdomII-1xBaseKI-1xKW
13 8 12 mpbid KHLWHxranII-1xBaseKI-1xKW
14 9 10 1 2 3 4 dialss KHLWHI-1xBaseKI-1xKWII-1xS
15 13 14 syldan KHLWHxranIII-1xS
16 7 15 eqeltrrd KHLWHxranIxS
17 16 ex KHLWHxranIxS
18 17 ssrdv KHLWHranIS