Step |
Hyp |
Ref |
Expression |
1 |
|
diasslss.h |
|- H = ( LHyp ` K ) |
2 |
|
diasslss.u |
|- U = ( ( DVecA ` K ) ` W ) |
3 |
|
diasslss.i |
|- I = ( ( DIsoA ` K ) ` W ) |
4 |
|
diasslss.s |
|- S = ( LSubSp ` U ) |
5 |
1 3
|
diaf11N |
|- ( ( K e. HL /\ W e. H ) -> I : dom I -1-1-onto-> ran I ) |
6 |
|
f1ocnvfv2 |
|- ( ( I : dom I -1-1-onto-> ran I /\ x e. ran I ) -> ( I ` ( `' I ` x ) ) = x ) |
7 |
5 6
|
sylan |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ran I ) -> ( I ` ( `' I ` x ) ) = x ) |
8 |
1 3
|
diacnvclN |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ran I ) -> ( `' I ` x ) e. dom I ) |
9 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
10 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
11 |
9 10 1 3
|
diaeldm |
|- ( ( K e. HL /\ W e. H ) -> ( ( `' I ` x ) e. dom I <-> ( ( `' I ` x ) e. ( Base ` K ) /\ ( `' I ` x ) ( le ` K ) W ) ) ) |
12 |
11
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ran I ) -> ( ( `' I ` x ) e. dom I <-> ( ( `' I ` x ) e. ( Base ` K ) /\ ( `' I ` x ) ( le ` K ) W ) ) ) |
13 |
8 12
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ran I ) -> ( ( `' I ` x ) e. ( Base ` K ) /\ ( `' I ` x ) ( le ` K ) W ) ) |
14 |
9 10 1 2 3 4
|
dialss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( `' I ` x ) e. ( Base ` K ) /\ ( `' I ` x ) ( le ` K ) W ) ) -> ( I ` ( `' I ` x ) ) e. S ) |
15 |
13 14
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ran I ) -> ( I ` ( `' I ` x ) ) e. S ) |
16 |
7 15
|
eqeltrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ran I ) -> x e. S ) |
17 |
16
|
ex |
|- ( ( K e. HL /\ W e. H ) -> ( x e. ran I -> x e. S ) ) |
18 |
17
|
ssrdv |
|- ( ( K e. HL /\ W e. H ) -> ran I C_ S ) |