Step |
Hyp |
Ref |
Expression |
1 |
|
diasslss.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
diasslss.u |
⊢ 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
diasslss.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
diasslss.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
5 |
1 3
|
diaf11N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 : dom 𝐼 –1-1-onto→ ran 𝐼 ) |
6 |
|
f1ocnvfv2 |
⊢ ( ( 𝐼 : dom 𝐼 –1-1-onto→ ran 𝐼 ∧ 𝑥 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑥 ) ) = 𝑥 ) |
7 |
5 6
|
sylan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑥 ) ) = 𝑥 ) |
8 |
1 3
|
diacnvclN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑥 ) ∈ dom 𝐼 ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
10 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
11 |
9 10 1 3
|
diaeldm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ◡ 𝐼 ‘ 𝑥 ) ∈ dom 𝐼 ↔ ( ( ◡ 𝐼 ‘ 𝑥 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ 𝑥 ) ( le ‘ 𝐾 ) 𝑊 ) ) ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ran 𝐼 ) → ( ( ◡ 𝐼 ‘ 𝑥 ) ∈ dom 𝐼 ↔ ( ( ◡ 𝐼 ‘ 𝑥 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ 𝑥 ) ( le ‘ 𝐾 ) 𝑊 ) ) ) |
13 |
8 12
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ran 𝐼 ) → ( ( ◡ 𝐼 ‘ 𝑥 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ 𝑥 ) ( le ‘ 𝐾 ) 𝑊 ) ) |
14 |
9 10 1 2 3 4
|
dialss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ◡ 𝐼 ‘ 𝑥 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ◡ 𝐼 ‘ 𝑥 ) ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑥 ) ) ∈ 𝑆 ) |
15 |
13 14
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑥 ) ) ∈ 𝑆 ) |
16 |
7 15
|
eqeltrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ran 𝐼 ) → 𝑥 ∈ 𝑆 ) |
17 |
16
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑥 ∈ ran 𝐼 → 𝑥 ∈ 𝑆 ) ) |
18 |
17
|
ssrdv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ran 𝐼 ⊆ 𝑆 ) |