| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvadia.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | dvadia.u | ⊢ 𝑈  =  ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | dvadia.i | ⊢ 𝐼  =  ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | dvadia.n | ⊢  ⊥   =  ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | dvadia.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 6 | 1 3 | diaf11N | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝐼 : dom  𝐼 –1-1-onto→ ran  𝐼 ) | 
						
							| 7 |  | f1of1 | ⊢ ( 𝐼 : dom  𝐼 –1-1-onto→ ran  𝐼  →  𝐼 : dom  𝐼 –1-1→ ran  𝐼 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝐼 : dom  𝐼 –1-1→ ran  𝐼 ) | 
						
							| 9 | 1 2 3 4 5 | diarnN | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ran  𝐼  =  { 𝑥  ∈  𝑆  ∣  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 } ) | 
						
							| 10 |  | f1eq3 | ⊢ ( ran  𝐼  =  { 𝑥  ∈  𝑆  ∣  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 }  →  ( 𝐼 : dom  𝐼 –1-1→ ran  𝐼  ↔  𝐼 : dom  𝐼 –1-1→ { 𝑥  ∈  𝑆  ∣  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 } ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ( 𝐼 : dom  𝐼 –1-1→ ran  𝐼  ↔  𝐼 : dom  𝐼 –1-1→ { 𝑥  ∈  𝑆  ∣  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 } ) ) | 
						
							| 12 | 8 11 | mpbid | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝐼 : dom  𝐼 –1-1→ { 𝑥  ∈  𝑆  ∣  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 } ) | 
						
							| 13 |  | dff1o5 | ⊢ ( 𝐼 : dom  𝐼 –1-1-onto→ { 𝑥  ∈  𝑆  ∣  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 }  ↔  ( 𝐼 : dom  𝐼 –1-1→ { 𝑥  ∈  𝑆  ∣  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 }  ∧  ran  𝐼  =  { 𝑥  ∈  𝑆  ∣  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 } ) ) | 
						
							| 14 | 12 9 13 | sylanbrc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝐼 : dom  𝐼 –1-1-onto→ { 𝑥  ∈  𝑆  ∣  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 } ) |