Step |
Hyp |
Ref |
Expression |
1 |
|
dvadia.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dvadia.u |
⊢ 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dvadia.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dvadia.n |
⊢ ⊥ = ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dvadia.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
6 |
1 3
|
diaf11N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 : dom 𝐼 –1-1-onto→ ran 𝐼 ) |
7 |
|
f1of1 |
⊢ ( 𝐼 : dom 𝐼 –1-1-onto→ ran 𝐼 → 𝐼 : dom 𝐼 –1-1→ ran 𝐼 ) |
8 |
6 7
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 : dom 𝐼 –1-1→ ran 𝐼 ) |
9 |
1 2 3 4 5
|
diarnN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ran 𝐼 = { 𝑥 ∈ 𝑆 ∣ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 } ) |
10 |
|
f1eq3 |
⊢ ( ran 𝐼 = { 𝑥 ∈ 𝑆 ∣ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 } → ( 𝐼 : dom 𝐼 –1-1→ ran 𝐼 ↔ 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ 𝑆 ∣ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 } ) ) |
11 |
9 10
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 : dom 𝐼 –1-1→ ran 𝐼 ↔ 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ 𝑆 ∣ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 } ) ) |
12 |
8 11
|
mpbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ 𝑆 ∣ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 } ) |
13 |
|
dff1o5 |
⊢ ( 𝐼 : dom 𝐼 –1-1-onto→ { 𝑥 ∈ 𝑆 ∣ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 } ↔ ( 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ 𝑆 ∣ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 } ∧ ran 𝐼 = { 𝑥 ∈ 𝑆 ∣ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 } ) ) |
14 |
12 9 13
|
sylanbrc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐼 : dom 𝐼 –1-1-onto→ { 𝑥 ∈ 𝑆 ∣ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 } ) |