Metamath Proof Explorer


Theorem diaf1oN

Description: The partial isomorphism A for a lattice K is a one-to-one, onto function. Part of Lemma M of Crawley p. 121 line 12, with closed subspaces rather than subspaces. See diadm for the domain. (Contributed by NM, 17-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dvadia.h 𝐻 = ( LHyp ‘ 𝐾 )
dvadia.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
dvadia.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
dvadia.n = ( ( ocA ‘ 𝐾 ) ‘ 𝑊 )
dvadia.s 𝑆 = ( LSubSp ‘ 𝑈 )
Assertion diaf1oN ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐼 : dom 𝐼1-1-onto→ { 𝑥𝑆 ∣ ( ‘ ( 𝑥 ) ) = 𝑥 } )

Proof

Step Hyp Ref Expression
1 dvadia.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvadia.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
3 dvadia.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
4 dvadia.n = ( ( ocA ‘ 𝐾 ) ‘ 𝑊 )
5 dvadia.s 𝑆 = ( LSubSp ‘ 𝑈 )
6 1 3 diaf11N ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐼 : dom 𝐼1-1-onto→ ran 𝐼 )
7 f1of1 ( 𝐼 : dom 𝐼1-1-onto→ ran 𝐼𝐼 : dom 𝐼1-1→ ran 𝐼 )
8 6 7 syl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐼 : dom 𝐼1-1→ ran 𝐼 )
9 1 2 3 4 5 diarnN ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ran 𝐼 = { 𝑥𝑆 ∣ ( ‘ ( 𝑥 ) ) = 𝑥 } )
10 f1eq3 ( ran 𝐼 = { 𝑥𝑆 ∣ ( ‘ ( 𝑥 ) ) = 𝑥 } → ( 𝐼 : dom 𝐼1-1→ ran 𝐼𝐼 : dom 𝐼1-1→ { 𝑥𝑆 ∣ ( ‘ ( 𝑥 ) ) = 𝑥 } ) )
11 9 10 syl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝐼 : dom 𝐼1-1→ ran 𝐼𝐼 : dom 𝐼1-1→ { 𝑥𝑆 ∣ ( ‘ ( 𝑥 ) ) = 𝑥 } ) )
12 8 11 mpbid ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐼 : dom 𝐼1-1→ { 𝑥𝑆 ∣ ( ‘ ( 𝑥 ) ) = 𝑥 } )
13 dff1o5 ( 𝐼 : dom 𝐼1-1-onto→ { 𝑥𝑆 ∣ ( ‘ ( 𝑥 ) ) = 𝑥 } ↔ ( 𝐼 : dom 𝐼1-1→ { 𝑥𝑆 ∣ ( ‘ ( 𝑥 ) ) = 𝑥 } ∧ ran 𝐼 = { 𝑥𝑆 ∣ ( ‘ ( 𝑥 ) ) = 𝑥 } ) )
14 12 9 13 sylanbrc ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐼 : dom 𝐼1-1-onto→ { 𝑥𝑆 ∣ ( ‘ ( 𝑥 ) ) = 𝑥 } )