Step |
Hyp |
Ref |
Expression |
1 |
|
dihglblem5a.b |
|- B = ( Base ` K ) |
2 |
|
dihglblem5a.m |
|- ./\ = ( meet ` K ) |
3 |
|
dihglblem5a.h |
|- H = ( LHyp ` K ) |
4 |
|
dihglblem5a.i |
|- I = ( ( DIsoH ` K ) ` W ) |
5 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B ) /\ X ( le ` K ) W ) -> X ( le ` K ) W ) |
6 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
7 |
6
|
ad3antrrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B ) /\ X ( le ` K ) W ) -> K e. Lat ) |
8 |
|
simplr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B ) /\ X ( le ` K ) W ) -> X e. B ) |
9 |
1 3
|
lhpbase |
|- ( W e. H -> W e. B ) |
10 |
9
|
ad3antlr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B ) /\ X ( le ` K ) W ) -> W e. B ) |
11 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
12 |
1 11 2
|
latleeqm1 |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ( le ` K ) W <-> ( X ./\ W ) = X ) ) |
13 |
7 8 10 12
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B ) /\ X ( le ` K ) W ) -> ( X ( le ` K ) W <-> ( X ./\ W ) = X ) ) |
14 |
5 13
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B ) /\ X ( le ` K ) W ) -> ( X ./\ W ) = X ) |
15 |
14
|
fveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B ) /\ X ( le ` K ) W ) -> ( I ` ( X ./\ W ) ) = ( I ` X ) ) |
16 |
|
simpll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B ) /\ X ( le ` K ) W ) -> ( K e. HL /\ W e. H ) ) |
17 |
1 11 3 4
|
dihord |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ W e. B ) -> ( ( I ` X ) C_ ( I ` W ) <-> X ( le ` K ) W ) ) |
18 |
16 8 10 17
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B ) /\ X ( le ` K ) W ) -> ( ( I ` X ) C_ ( I ` W ) <-> X ( le ` K ) W ) ) |
19 |
5 18
|
mpbird |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B ) /\ X ( le ` K ) W ) -> ( I ` X ) C_ ( I ` W ) ) |
20 |
|
df-ss |
|- ( ( I ` X ) C_ ( I ` W ) <-> ( ( I ` X ) i^i ( I ` W ) ) = ( I ` X ) ) |
21 |
19 20
|
sylib |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B ) /\ X ( le ` K ) W ) -> ( ( I ` X ) i^i ( I ` W ) ) = ( I ` X ) ) |
22 |
15 21
|
eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B ) /\ X ( le ` K ) W ) -> ( I ` ( X ./\ W ) ) = ( ( I ` X ) i^i ( I ` W ) ) ) |
23 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
24 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
25 |
|
eqid |
|- ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W ) |
26 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
27 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
28 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
29 |
|
eqid |
|- ( iota_ h e. ( ( LTrn ` K ) ` W ) ( h ` ( ( oc ` K ) ` W ) ) = q ) = ( iota_ h e. ( ( LTrn ` K ) ` W ) ( h ` ( ( oc ` K ) ` W ) ) = q ) |
30 |
|
eqid |
|- ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) = ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) |
31 |
1 2 3 4 11 23 24 25 26 27 28 29 30
|
dihglblem5apreN |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X ( le ` K ) W ) ) -> ( I ` ( X ./\ W ) ) = ( ( I ` X ) i^i ( I ` W ) ) ) |
32 |
31
|
anassrs |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B ) /\ -. X ( le ` K ) W ) -> ( I ` ( X ./\ W ) ) = ( ( I ` X ) i^i ( I ` W ) ) ) |
33 |
22 32
|
pm2.61dan |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( I ` ( X ./\ W ) ) = ( ( I ` X ) i^i ( I ` W ) ) ) |