Step |
Hyp |
Ref |
Expression |
1 |
|
dihmeetlem14.b |
|- B = ( Base ` K ) |
2 |
|
dihmeetlem14.l |
|- .<_ = ( le ` K ) |
3 |
|
dihmeetlem14.h |
|- H = ( LHyp ` K ) |
4 |
|
dihmeetlem14.j |
|- .\/ = ( join ` K ) |
5 |
|
dihmeetlem14.m |
|- ./\ = ( meet ` K ) |
6 |
|
dihmeetlem14.a |
|- A = ( Atoms ` K ) |
7 |
|
dihmeetlem14.u |
|- U = ( ( DVecH ` K ) ` W ) |
8 |
|
dihmeetlem14.s |
|- .(+) = ( LSSum ` U ) |
9 |
|
dihmeetlem14.i |
|- I = ( ( DIsoH ` K ) ` W ) |
10 |
|
dihmeetlem15.z |
|- .0. = ( 0g ` U ) |
11 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ Y e. B /\ ( p e. A /\ -. p .<_ W ) ) /\ ( ( r e. A /\ -. r .<_ W ) /\ r .<_ Y /\ ( Y ./\ p ) .<_ W ) ) -> ( K e. HL /\ W e. H ) ) |
12 |
|
simpr1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ Y e. B /\ ( p e. A /\ -. p .<_ W ) ) /\ ( ( r e. A /\ -. r .<_ W ) /\ r .<_ Y /\ ( Y ./\ p ) .<_ W ) ) -> ( r e. A /\ -. r .<_ W ) ) |
13 |
|
simpl3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ Y e. B /\ ( p e. A /\ -. p .<_ W ) ) /\ ( ( r e. A /\ -. r .<_ W ) /\ r .<_ Y /\ ( Y ./\ p ) .<_ W ) ) -> ( p e. A /\ -. p .<_ W ) ) |
14 |
|
simpl3r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ Y e. B /\ ( p e. A /\ -. p .<_ W ) ) /\ ( ( r e. A /\ -. r .<_ W ) /\ r .<_ Y /\ ( Y ./\ p ) .<_ W ) ) -> -. p .<_ W ) |
15 |
|
simp3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ Y e. B /\ ( p e. A /\ -. p .<_ W ) ) /\ ( ( r e. A /\ -. r .<_ W ) /\ r .<_ Y /\ ( Y ./\ p ) .<_ W ) /\ r = p ) -> r = p ) |
16 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ Y e. B /\ ( p e. A /\ -. p .<_ W ) ) /\ ( ( r e. A /\ -. r .<_ W ) /\ r .<_ Y /\ ( Y ./\ p ) .<_ W ) /\ r = p ) -> r .<_ Y ) |
17 |
15 16
|
eqbrtrrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ Y e. B /\ ( p e. A /\ -. p .<_ W ) ) /\ ( ( r e. A /\ -. r .<_ W ) /\ r .<_ Y /\ ( Y ./\ p ) .<_ W ) /\ r = p ) -> p .<_ Y ) |
18 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ Y e. B /\ ( p e. A /\ -. p .<_ W ) ) /\ ( ( r e. A /\ -. r .<_ W ) /\ r .<_ Y /\ ( Y ./\ p ) .<_ W ) /\ r = p ) -> K e. HL ) |
19 |
18
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ Y e. B /\ ( p e. A /\ -. p .<_ W ) ) /\ ( ( r e. A /\ -. r .<_ W ) /\ r .<_ Y /\ ( Y ./\ p ) .<_ W ) /\ r = p ) -> K e. Lat ) |
20 |
|
simp13l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ Y e. B /\ ( p e. A /\ -. p .<_ W ) ) /\ ( ( r e. A /\ -. r .<_ W ) /\ r .<_ Y /\ ( Y ./\ p ) .<_ W ) /\ r = p ) -> p e. A ) |
21 |
1 6
|
atbase |
|- ( p e. A -> p e. B ) |
22 |
20 21
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ Y e. B /\ ( p e. A /\ -. p .<_ W ) ) /\ ( ( r e. A /\ -. r .<_ W ) /\ r .<_ Y /\ ( Y ./\ p ) .<_ W ) /\ r = p ) -> p e. B ) |
23 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ Y e. B /\ ( p e. A /\ -. p .<_ W ) ) /\ ( ( r e. A /\ -. r .<_ W ) /\ r .<_ Y /\ ( Y ./\ p ) .<_ W ) /\ r = p ) -> Y e. B ) |
24 |
1 2 5
|
latleeqm2 |
|- ( ( K e. Lat /\ p e. B /\ Y e. B ) -> ( p .<_ Y <-> ( Y ./\ p ) = p ) ) |
25 |
19 22 23 24
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ Y e. B /\ ( p e. A /\ -. p .<_ W ) ) /\ ( ( r e. A /\ -. r .<_ W ) /\ r .<_ Y /\ ( Y ./\ p ) .<_ W ) /\ r = p ) -> ( p .<_ Y <-> ( Y ./\ p ) = p ) ) |
26 |
17 25
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ Y e. B /\ ( p e. A /\ -. p .<_ W ) ) /\ ( ( r e. A /\ -. r .<_ W ) /\ r .<_ Y /\ ( Y ./\ p ) .<_ W ) /\ r = p ) -> ( Y ./\ p ) = p ) |
27 |
|
simp23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ Y e. B /\ ( p e. A /\ -. p .<_ W ) ) /\ ( ( r e. A /\ -. r .<_ W ) /\ r .<_ Y /\ ( Y ./\ p ) .<_ W ) /\ r = p ) -> ( Y ./\ p ) .<_ W ) |
28 |
26 27
|
eqbrtrrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ Y e. B /\ ( p e. A /\ -. p .<_ W ) ) /\ ( ( r e. A /\ -. r .<_ W ) /\ r .<_ Y /\ ( Y ./\ p ) .<_ W ) /\ r = p ) -> p .<_ W ) |
29 |
28
|
3expia |
|- ( ( ( ( K e. HL /\ W e. H ) /\ Y e. B /\ ( p e. A /\ -. p .<_ W ) ) /\ ( ( r e. A /\ -. r .<_ W ) /\ r .<_ Y /\ ( Y ./\ p ) .<_ W ) ) -> ( r = p -> p .<_ W ) ) |
30 |
29
|
necon3bd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ Y e. B /\ ( p e. A /\ -. p .<_ W ) ) /\ ( ( r e. A /\ -. r .<_ W ) /\ r .<_ Y /\ ( Y ./\ p ) .<_ W ) ) -> ( -. p .<_ W -> r =/= p ) ) |
31 |
14 30
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ Y e. B /\ ( p e. A /\ -. p .<_ W ) ) /\ ( ( r e. A /\ -. r .<_ W ) /\ r .<_ Y /\ ( Y ./\ p ) .<_ W ) ) -> r =/= p ) |
32 |
|
eqid |
|- ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W ) |
33 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
34 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
35 |
|
eqid |
|- ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) = ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) |
36 |
|
eqid |
|- ( iota_ h e. ( ( LTrn ` K ) ` W ) ( h ` ( ( oc ` K ) ` W ) ) = r ) = ( iota_ h e. ( ( LTrn ` K ) ` W ) ( h ` ( ( oc ` K ) ` W ) ) = r ) |
37 |
|
eqid |
|- ( iota_ h e. ( ( LTrn ` K ) ` W ) ( h ` ( ( oc ` K ) ` W ) ) = p ) = ( iota_ h e. ( ( LTrn ` K ) ` W ) ( h ` ( ( oc ` K ) ` W ) ) = p ) |
38 |
1 2 4 6 3 32 33 34 35 9 7 10 36 37
|
dihmeetlem13N |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( r e. A /\ -. r .<_ W ) /\ ( p e. A /\ -. p .<_ W ) ) /\ r =/= p ) -> ( ( I ` r ) i^i ( I ` p ) ) = { .0. } ) |
39 |
11 12 13 31 38
|
syl121anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ Y e. B /\ ( p e. A /\ -. p .<_ W ) ) /\ ( ( r e. A /\ -. r .<_ W ) /\ r .<_ Y /\ ( Y ./\ p ) .<_ W ) ) -> ( ( I ` r ) i^i ( I ` p ) ) = { .0. } ) |