| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vsnex |
|- { x } e. _V |
| 2 |
|
distop |
|- ( { x } e. _V -> ~P { x } e. Top ) |
| 3 |
1 2
|
ax-mp |
|- ~P { x } e. Top |
| 4 |
|
tgtop |
|- ( ~P { x } e. Top -> ( topGen ` ~P { x } ) = ~P { x } ) |
| 5 |
3 4
|
ax-mp |
|- ( topGen ` ~P { x } ) = ~P { x } |
| 6 |
|
topbas |
|- ( ~P { x } e. Top -> ~P { x } e. TopBases ) |
| 7 |
3 6
|
ax-mp |
|- ~P { x } e. TopBases |
| 8 |
|
snfi |
|- { x } e. Fin |
| 9 |
|
pwfi |
|- ( { x } e. Fin <-> ~P { x } e. Fin ) |
| 10 |
8 9
|
mpbi |
|- ~P { x } e. Fin |
| 11 |
|
isfinite |
|- ( ~P { x } e. Fin <-> ~P { x } ~< _om ) |
| 12 |
10 11
|
mpbi |
|- ~P { x } ~< _om |
| 13 |
|
sdomdom |
|- ( ~P { x } ~< _om -> ~P { x } ~<_ _om ) |
| 14 |
12 13
|
ax-mp |
|- ~P { x } ~<_ _om |
| 15 |
|
2ndci |
|- ( ( ~P { x } e. TopBases /\ ~P { x } ~<_ _om ) -> ( topGen ` ~P { x } ) e. 2ndc ) |
| 16 |
7 14 15
|
mp2an |
|- ( topGen ` ~P { x } ) e. 2ndc |
| 17 |
5 16
|
eqeltrri |
|- ~P { x } e. 2ndc |
| 18 |
|
2ndc1stc |
|- ( ~P { x } e. 2ndc -> ~P { x } e. 1stc ) |
| 19 |
17 18
|
ax-mp |
|- ~P { x } e. 1stc |
| 20 |
19
|
rgenw |
|- A. x e. X ~P { x } e. 1stc |
| 21 |
|
dislly |
|- ( X e. V -> ( ~P X e. Locally 1stc <-> A. x e. X ~P { x } e. 1stc ) ) |
| 22 |
20 21
|
mpbiri |
|- ( X e. V -> ~P X e. Locally 1stc ) |
| 23 |
|
lly1stc |
|- Locally 1stc = 1stc |
| 24 |
22 23
|
eleqtrdi |
|- ( X e. V -> ~P X e. 1stc ) |