Metamath Proof Explorer


Theorem dis1stc

Description: A discrete space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion dis1stc XV𝒫X1st𝜔

Proof

Step Hyp Ref Expression
1 vsnex xV
2 distop xV𝒫xTop
3 1 2 ax-mp 𝒫xTop
4 tgtop 𝒫xToptopGen𝒫x=𝒫x
5 3 4 ax-mp topGen𝒫x=𝒫x
6 topbas 𝒫xTop𝒫xTopBases
7 3 6 ax-mp 𝒫xTopBases
8 snfi xFin
9 pwfi xFin𝒫xFin
10 8 9 mpbi 𝒫xFin
11 isfinite 𝒫xFin𝒫xω
12 10 11 mpbi 𝒫xω
13 sdomdom 𝒫xω𝒫xω
14 12 13 ax-mp 𝒫xω
15 2ndci 𝒫xTopBases𝒫xωtopGen𝒫x2nd𝜔
16 7 14 15 mp2an topGen𝒫x2nd𝜔
17 5 16 eqeltrri 𝒫x2nd𝜔
18 2ndc1stc 𝒫x2nd𝜔𝒫x1st𝜔
19 17 18 ax-mp 𝒫x1st𝜔
20 19 rgenw xX𝒫x1st𝜔
21 dislly XV𝒫XLocally 1st𝜔 xX𝒫x1st𝜔
22 20 21 mpbiri XV𝒫XLocally 1st𝜔
23 lly1stc Locally 1st𝜔 = 1st𝜔
24 22 23 eleqtrdi XV𝒫X1st𝜔