| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2ndctop |
|
| 2 |
|
is2ndc |
|
| 3 |
|
ssrab2 |
|
| 4 |
|
bastg |
|
| 5 |
4
|
3ad2ant1 |
|
| 6 |
3 5
|
sstrid |
|
| 7 |
|
fvex |
|
| 8 |
7
|
elpw2 |
|
| 9 |
6 8
|
sylibr |
|
| 10 |
|
vex |
|
| 11 |
|
ssdomg |
|
| 12 |
10 3 11
|
mp2 |
|
| 13 |
|
simp2 |
|
| 14 |
|
domtr |
|
| 15 |
12 13 14
|
sylancr |
|
| 16 |
|
eltg2b |
|
| 17 |
16
|
3ad2ant1 |
|
| 18 |
|
elequ1 |
|
| 19 |
18
|
anbi1d |
|
| 20 |
19
|
rexbidv |
|
| 21 |
20
|
rspccv |
|
| 22 |
|
id |
|
| 23 |
22
|
adantrr |
|
| 24 |
|
elequ2 |
|
| 25 |
24
|
elrab |
|
| 26 |
23 25
|
sylibr |
|
| 27 |
|
simprr |
|
| 28 |
|
elequ2 |
|
| 29 |
|
sseq1 |
|
| 30 |
28 29
|
anbi12d |
|
| 31 |
30
|
rspcev |
|
| 32 |
26 27 31
|
syl2an2 |
|
| 33 |
32
|
rexlimdvaa |
|
| 34 |
21 33
|
syl9r |
|
| 35 |
17 34
|
sylbid |
|
| 36 |
35
|
ralrimiv |
|
| 37 |
|
breq1 |
|
| 38 |
|
rexeq |
|
| 39 |
38
|
imbi2d |
|
| 40 |
39
|
ralbidv |
|
| 41 |
37 40
|
anbi12d |
|
| 42 |
41
|
rspcev |
|
| 43 |
9 15 36 42
|
syl12anc |
|
| 44 |
43
|
3expia |
|
| 45 |
|
unieq |
|
| 46 |
45
|
eleq2d |
|
| 47 |
|
pweq |
|
| 48 |
|
raleq |
|
| 49 |
48
|
anbi2d |
|
| 50 |
47 49
|
rexeqbidv |
|
| 51 |
46 50
|
imbi12d |
|
| 52 |
44 51
|
syl5ibcom |
|
| 53 |
52
|
expimpd |
|
| 54 |
53
|
rexlimiv |
|
| 55 |
2 54
|
sylbi |
|
| 56 |
55
|
ralrimiv |
|
| 57 |
|
eqid |
|
| 58 |
57
|
is1stc2 |
|
| 59 |
1 56 58
|
sylanbrc |
|