Metamath Proof Explorer


Theorem hausmapdom

Description: If X is a first-countable Hausdorff space, then the cardinality of the closure of a set A is bounded by NN to the power A . In particular, a first-countable Hausdorff space with a dense subset A has cardinality at most A ^ NN , and a separable first-countable Hausdorff space has cardinality at most ~P NN . (Compare hauspwpwdom to see a weaker result if the assumption of first-countability is omitted.) (Contributed by Mario Carneiro, 9-Apr-2015)

Ref Expression
Hypothesis hauspwdom.1 X = J
Assertion hausmapdom J Haus J 1 st 𝜔 A X cls J A A

Proof

Step Hyp Ref Expression
1 hauspwdom.1 X = J
2 1 1stcelcls J 1 st 𝜔 A X x cls J A f f : A f t J x
3 2 3adant1 J Haus J 1 st 𝜔 A X x cls J A f f : A f t J x
4 uniexg J Haus J V
5 4 3ad2ant1 J Haus J 1 st 𝜔 A X J V
6 1 5 eqeltrid J Haus J 1 st 𝜔 A X X V
7 simp3 J Haus J 1 st 𝜔 A X A X
8 6 7 ssexd J Haus J 1 st 𝜔 A X A V
9 nnex V
10 elmapg A V V f A f : A
11 8 9 10 sylancl J Haus J 1 st 𝜔 A X f A f : A
12 11 anbi1d J Haus J 1 st 𝜔 A X f A f t J x f : A f t J x
13 12 exbidv J Haus J 1 st 𝜔 A X f f A f t J x f f : A f t J x
14 3 13 bitr4d J Haus J 1 st 𝜔 A X x cls J A f f A f t J x
15 df-rex f A f t J x f f A f t J x
16 14 15 bitr4di J Haus J 1 st 𝜔 A X x cls J A f A f t J x
17 vex x V
18 17 elima x t J A f A f t J x
19 16 18 bitr4di J Haus J 1 st 𝜔 A X x cls J A x t J A
20 19 eqrdv J Haus J 1 st 𝜔 A X cls J A = t J A
21 ovex A V
22 lmfun J Haus Fun t J
23 22 3ad2ant1 J Haus J 1 st 𝜔 A X Fun t J
24 imadomg A V Fun t J t J A A
25 21 23 24 mpsyl J Haus J 1 st 𝜔 A X t J A A
26 20 25 eqbrtrd J Haus J 1 st 𝜔 A X cls J A A