Metamath Proof Explorer


Theorem hausmapdom

Description: If X is a first-countable Hausdorff space, then the cardinality of the closure of a set A is bounded by NN to the power A . In particular, a first-countable Hausdorff space with a dense subset A has cardinality at most A ^ NN , and a separable first-countable Hausdorff space has cardinality at most ~P NN . (Compare hauspwpwdom to see a weaker result if the assumption of first-countability is omitted.) (Contributed by Mario Carneiro, 9-Apr-2015)

Ref Expression
Hypothesis hauspwdom.1 X=J
Assertion hausmapdom JHausJ1st𝜔AXclsJAA

Proof

Step Hyp Ref Expression
1 hauspwdom.1 X=J
2 1 1stcelcls J1st𝜔AXxclsJAff:AftJx
3 2 3adant1 JHausJ1st𝜔AXxclsJAff:AftJx
4 uniexg JHausJV
5 4 3ad2ant1 JHausJ1st𝜔AXJV
6 1 5 eqeltrid JHausJ1st𝜔AXXV
7 simp3 JHausJ1st𝜔AXAX
8 6 7 ssexd JHausJ1st𝜔AXAV
9 nnex V
10 elmapg AVVfAf:A
11 8 9 10 sylancl JHausJ1st𝜔AXfAf:A
12 11 anbi1d JHausJ1st𝜔AXfAftJxf:AftJx
13 12 exbidv JHausJ1st𝜔AXffAftJxff:AftJx
14 3 13 bitr4d JHausJ1st𝜔AXxclsJAffAftJx
15 df-rex fAftJxffAftJx
16 14 15 bitr4di JHausJ1st𝜔AXxclsJAfAftJx
17 vex xV
18 17 elima xtJAfAftJx
19 16 18 bitr4di JHausJ1st𝜔AXxclsJAxtJA
20 19 eqrdv JHausJ1st𝜔AXclsJA=tJA
21 ovex AV
22 lmfun JHausFuntJ
23 22 3ad2ant1 JHausJ1st𝜔AXFuntJ
24 imadomg AVFuntJtJAA
25 21 23 24 mpsyl JHausJ1st𝜔AXtJAA
26 20 25 eqbrtrd JHausJ1st𝜔AXclsJAA