| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hauspwdom.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
1
|
1stcelcls |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐴 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) ) |
| 3 |
2
|
3adant1 |
⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐴 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) ) |
| 4 |
|
uniexg |
⊢ ( 𝐽 ∈ Haus → ∪ 𝐽 ∈ V ) |
| 5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ∪ 𝐽 ∈ V ) |
| 6 |
1 5
|
eqeltrid |
⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → 𝑋 ∈ V ) |
| 7 |
|
simp3 |
⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ⊆ 𝑋 ) |
| 8 |
6 7
|
ssexd |
⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ∈ V ) |
| 9 |
|
nnex |
⊢ ℕ ∈ V |
| 10 |
|
elmapg |
⊢ ( ( 𝐴 ∈ V ∧ ℕ ∈ V ) → ( 𝑓 ∈ ( 𝐴 ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ 𝐴 ) ) |
| 11 |
8 9 10
|
sylancl |
⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑓 ∈ ( 𝐴 ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ 𝐴 ) ) |
| 12 |
11
|
anbi1d |
⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝑓 ∈ ( 𝐴 ↑m ℕ ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ↔ ( 𝑓 : ℕ ⟶ 𝐴 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) ) |
| 13 |
12
|
exbidv |
⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( ∃ 𝑓 ( 𝑓 ∈ ( 𝐴 ↑m ℕ ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐴 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) ) |
| 14 |
3 13
|
bitr4d |
⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ∃ 𝑓 ( 𝑓 ∈ ( 𝐴 ↑m ℕ ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) ) |
| 15 |
|
df-rex |
⊢ ( ∃ 𝑓 ∈ ( 𝐴 ↑m ℕ ) 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ↔ ∃ 𝑓 ( 𝑓 ∈ ( 𝐴 ↑m ℕ ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) |
| 16 |
14 15
|
bitr4di |
⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ∃ 𝑓 ∈ ( 𝐴 ↑m ℕ ) 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) |
| 17 |
|
vex |
⊢ 𝑥 ∈ V |
| 18 |
17
|
elima |
⊢ ( 𝑥 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝐴 ↑m ℕ ) ) ↔ ∃ 𝑓 ∈ ( 𝐴 ↑m ℕ ) 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) |
| 19 |
16 18
|
bitr4di |
⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ 𝑥 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝐴 ↑m ℕ ) ) ) ) |
| 20 |
19
|
eqrdv |
⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝐴 ↑m ℕ ) ) ) |
| 21 |
|
ovex |
⊢ ( 𝐴 ↑m ℕ ) ∈ V |
| 22 |
|
lmfun |
⊢ ( 𝐽 ∈ Haus → Fun ( ⇝𝑡 ‘ 𝐽 ) ) |
| 23 |
22
|
3ad2ant1 |
⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → Fun ( ⇝𝑡 ‘ 𝐽 ) ) |
| 24 |
|
imadomg |
⊢ ( ( 𝐴 ↑m ℕ ) ∈ V → ( Fun ( ⇝𝑡 ‘ 𝐽 ) → ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝐴 ↑m ℕ ) ) ≼ ( 𝐴 ↑m ℕ ) ) ) |
| 25 |
21 23 24
|
mpsyl |
⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝐴 ↑m ℕ ) ) ≼ ( 𝐴 ↑m ℕ ) ) |
| 26 |
20 25
|
eqbrtrd |
⊢ ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ 1stω ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ≼ ( 𝐴 ↑m ℕ ) ) |