| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hauspwdom.1 |
|
| 2 |
1
|
hausmapdom |
|
| 3 |
2
|
adantr |
|
| 4 |
|
simprr |
|
| 5 |
|
1nn |
|
| 6 |
|
noel |
|
| 7 |
|
eleq2 |
|
| 8 |
6 7
|
mtbiri |
|
| 9 |
8
|
adantr |
|
| 10 |
5 9
|
mt2 |
|
| 11 |
|
mapdom2 |
|
| 12 |
4 10 11
|
sylancl |
|
| 13 |
|
sdomdom |
|
| 14 |
13
|
adantl |
|
| 15 |
|
mapdom1 |
|
| 16 |
14 15
|
syl |
|
| 17 |
|
reldom |
|
| 18 |
17
|
brrelex2i |
|
| 19 |
18
|
ad2antll |
|
| 20 |
|
pw2eng |
|
| 21 |
|
ensym |
|
| 22 |
19 20 21
|
3syl |
|
| 23 |
22
|
adantr |
|
| 24 |
|
domentr |
|
| 25 |
16 23 24
|
syl2anc |
|
| 26 |
|
onfin2 |
|
| 27 |
|
inss2 |
|
| 28 |
26 27
|
eqsstri |
|
| 29 |
|
2onn |
|
| 30 |
28 29
|
sselii |
|
| 31 |
|
simprl |
|
| 32 |
17
|
brrelex1i |
|
| 33 |
31 32
|
syl |
|
| 34 |
|
fidomtri |
|
| 35 |
30 33 34
|
sylancr |
|
| 36 |
35
|
biimpar |
|
| 37 |
|
numth3 |
|
| 38 |
19 37
|
syl |
|
| 39 |
38
|
adantr |
|
| 40 |
|
nnenom |
|
| 41 |
40
|
ensymi |
|
| 42 |
|
endomtr |
|
| 43 |
41 4 42
|
sylancr |
|
| 44 |
43
|
adantr |
|
| 45 |
|
simpr |
|
| 46 |
31
|
adantr |
|
| 47 |
|
mappwen |
|
| 48 |
39 44 45 46 47
|
syl22anc |
|
| 49 |
|
endom |
|
| 50 |
48 49
|
syl |
|
| 51 |
36 50
|
syldan |
|
| 52 |
25 51
|
pm2.61dan |
|
| 53 |
|
domtr |
|
| 54 |
12 52 53
|
syl2anc |
|
| 55 |
|
domtr |
|
| 56 |
3 54 55
|
syl2anc |
|