Step |
Hyp |
Ref |
Expression |
1 |
|
disjif2.1 |
|- F/_ x A |
2 |
|
disjif2.2 |
|- F/_ x C |
3 |
|
disjif2.3 |
|- ( x = Y -> B = C ) |
4 |
|
inelcm |
|- ( ( Z e. B /\ Z e. C ) -> ( B i^i C ) =/= (/) ) |
5 |
1
|
disjorsf |
|- ( Disj_ x e. A B <-> A. y e. A A. z e. A ( y = z \/ ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) ) ) |
6 |
|
equequ1 |
|- ( y = x -> ( y = z <-> x = z ) ) |
7 |
|
csbeq1 |
|- ( y = x -> [_ y / x ]_ B = [_ x / x ]_ B ) |
8 |
|
csbid |
|- [_ x / x ]_ B = B |
9 |
7 8
|
eqtrdi |
|- ( y = x -> [_ y / x ]_ B = B ) |
10 |
9
|
ineq1d |
|- ( y = x -> ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = ( B i^i [_ z / x ]_ B ) ) |
11 |
10
|
eqeq1d |
|- ( y = x -> ( ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) <-> ( B i^i [_ z / x ]_ B ) = (/) ) ) |
12 |
6 11
|
orbi12d |
|- ( y = x -> ( ( y = z \/ ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) ) <-> ( x = z \/ ( B i^i [_ z / x ]_ B ) = (/) ) ) ) |
13 |
|
eqeq2 |
|- ( z = Y -> ( x = z <-> x = Y ) ) |
14 |
|
nfcv |
|- F/_ x Y |
15 |
14 2 3
|
csbhypf |
|- ( z = Y -> [_ z / x ]_ B = C ) |
16 |
15
|
ineq2d |
|- ( z = Y -> ( B i^i [_ z / x ]_ B ) = ( B i^i C ) ) |
17 |
16
|
eqeq1d |
|- ( z = Y -> ( ( B i^i [_ z / x ]_ B ) = (/) <-> ( B i^i C ) = (/) ) ) |
18 |
13 17
|
orbi12d |
|- ( z = Y -> ( ( x = z \/ ( B i^i [_ z / x ]_ B ) = (/) ) <-> ( x = Y \/ ( B i^i C ) = (/) ) ) ) |
19 |
12 18
|
rspc2v |
|- ( ( x e. A /\ Y e. A ) -> ( A. y e. A A. z e. A ( y = z \/ ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) ) -> ( x = Y \/ ( B i^i C ) = (/) ) ) ) |
20 |
5 19
|
syl5bi |
|- ( ( x e. A /\ Y e. A ) -> ( Disj_ x e. A B -> ( x = Y \/ ( B i^i C ) = (/) ) ) ) |
21 |
20
|
impcom |
|- ( ( Disj_ x e. A B /\ ( x e. A /\ Y e. A ) ) -> ( x = Y \/ ( B i^i C ) = (/) ) ) |
22 |
21
|
ord |
|- ( ( Disj_ x e. A B /\ ( x e. A /\ Y e. A ) ) -> ( -. x = Y -> ( B i^i C ) = (/) ) ) |
23 |
22
|
necon1ad |
|- ( ( Disj_ x e. A B /\ ( x e. A /\ Y e. A ) ) -> ( ( B i^i C ) =/= (/) -> x = Y ) ) |
24 |
23
|
3impia |
|- ( ( Disj_ x e. A B /\ ( x e. A /\ Y e. A ) /\ ( B i^i C ) =/= (/) ) -> x = Y ) |
25 |
4 24
|
syl3an3 |
|- ( ( Disj_ x e. A B /\ ( x e. A /\ Y e. A ) /\ ( Z e. B /\ Z e. C ) ) -> x = Y ) |