Step |
Hyp |
Ref |
Expression |
1 |
|
ssid |
|- B C_ B |
2 |
1
|
biantru |
|- ( B C_ A <-> ( B C_ A /\ B C_ B ) ) |
3 |
|
ssin |
|- ( ( B C_ A /\ B C_ B ) <-> B C_ ( A i^i B ) ) |
4 |
2 3
|
bitri |
|- ( B C_ A <-> B C_ ( A i^i B ) ) |
5 |
|
sseq2 |
|- ( ( A i^i B ) = (/) -> ( B C_ ( A i^i B ) <-> B C_ (/) ) ) |
6 |
4 5
|
bitrid |
|- ( ( A i^i B ) = (/) -> ( B C_ A <-> B C_ (/) ) ) |
7 |
|
ss0 |
|- ( B C_ (/) -> B = (/) ) |
8 |
6 7
|
syl6bi |
|- ( ( A i^i B ) = (/) -> ( B C_ A -> B = (/) ) ) |
9 |
8
|
necon3ad |
|- ( ( A i^i B ) = (/) -> ( B =/= (/) -> -. B C_ A ) ) |
10 |
9
|
imp |
|- ( ( ( A i^i B ) = (/) /\ B =/= (/) ) -> -. B C_ A ) |
11 |
|
nsspssun |
|- ( -. B C_ A <-> A C. ( B u. A ) ) |
12 |
|
uncom |
|- ( B u. A ) = ( A u. B ) |
13 |
12
|
psseq2i |
|- ( A C. ( B u. A ) <-> A C. ( A u. B ) ) |
14 |
11 13
|
bitri |
|- ( -. B C_ A <-> A C. ( A u. B ) ) |
15 |
10 14
|
sylib |
|- ( ( ( A i^i B ) = (/) /\ B =/= (/) ) -> A C. ( A u. B ) ) |