Metamath Proof Explorer


Theorem disjpss

Description: A class is a proper subset of its union with a disjoint nonempty class. (Contributed by NM, 15-Sep-2004)

Ref Expression
Assertion disjpss ( ( ( 𝐴𝐵 ) = ∅ ∧ 𝐵 ≠ ∅ ) → 𝐴 ⊊ ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 ssid 𝐵𝐵
2 1 biantru ( 𝐵𝐴 ↔ ( 𝐵𝐴𝐵𝐵 ) )
3 ssin ( ( 𝐵𝐴𝐵𝐵 ) ↔ 𝐵 ⊆ ( 𝐴𝐵 ) )
4 2 3 bitri ( 𝐵𝐴𝐵 ⊆ ( 𝐴𝐵 ) )
5 sseq2 ( ( 𝐴𝐵 ) = ∅ → ( 𝐵 ⊆ ( 𝐴𝐵 ) ↔ 𝐵 ⊆ ∅ ) )
6 4 5 syl5bb ( ( 𝐴𝐵 ) = ∅ → ( 𝐵𝐴𝐵 ⊆ ∅ ) )
7 ss0 ( 𝐵 ⊆ ∅ → 𝐵 = ∅ )
8 6 7 syl6bi ( ( 𝐴𝐵 ) = ∅ → ( 𝐵𝐴𝐵 = ∅ ) )
9 8 necon3ad ( ( 𝐴𝐵 ) = ∅ → ( 𝐵 ≠ ∅ → ¬ 𝐵𝐴 ) )
10 9 imp ( ( ( 𝐴𝐵 ) = ∅ ∧ 𝐵 ≠ ∅ ) → ¬ 𝐵𝐴 )
11 nsspssun ( ¬ 𝐵𝐴𝐴 ⊊ ( 𝐵𝐴 ) )
12 uncom ( 𝐵𝐴 ) = ( 𝐴𝐵 )
13 12 psseq2i ( 𝐴 ⊊ ( 𝐵𝐴 ) ↔ 𝐴 ⊊ ( 𝐴𝐵 ) )
14 11 13 bitri ( ¬ 𝐵𝐴𝐴 ⊊ ( 𝐴𝐵 ) )
15 10 14 sylib ( ( ( 𝐴𝐵 ) = ∅ ∧ 𝐵 ≠ ∅ ) → 𝐴 ⊊ ( 𝐴𝐵 ) )