Step |
Hyp |
Ref |
Expression |
1 |
|
ssid |
⊢ 𝐵 ⊆ 𝐵 |
2 |
1
|
biantru |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐵 ) ) |
3 |
|
ssin |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐵 ) ↔ 𝐵 ⊆ ( 𝐴 ∩ 𝐵 ) ) |
4 |
2 3
|
bitri |
⊢ ( 𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ ( 𝐴 ∩ 𝐵 ) ) |
5 |
|
sseq2 |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐵 ⊆ ( 𝐴 ∩ 𝐵 ) ↔ 𝐵 ⊆ ∅ ) ) |
6 |
4 5
|
bitrid |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ ∅ ) ) |
7 |
|
ss0 |
⊢ ( 𝐵 ⊆ ∅ → 𝐵 = ∅ ) |
8 |
6 7
|
syl6bi |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐵 ⊆ 𝐴 → 𝐵 = ∅ ) ) |
9 |
8
|
necon3ad |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐵 ≠ ∅ → ¬ 𝐵 ⊆ 𝐴 ) ) |
10 |
9
|
imp |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐵 ≠ ∅ ) → ¬ 𝐵 ⊆ 𝐴 ) |
11 |
|
nsspssun |
⊢ ( ¬ 𝐵 ⊆ 𝐴 ↔ 𝐴 ⊊ ( 𝐵 ∪ 𝐴 ) ) |
12 |
|
uncom |
⊢ ( 𝐵 ∪ 𝐴 ) = ( 𝐴 ∪ 𝐵 ) |
13 |
12
|
psseq2i |
⊢ ( 𝐴 ⊊ ( 𝐵 ∪ 𝐴 ) ↔ 𝐴 ⊊ ( 𝐴 ∪ 𝐵 ) ) |
14 |
11 13
|
bitri |
⊢ ( ¬ 𝐵 ⊆ 𝐴 ↔ 𝐴 ⊊ ( 𝐴 ∪ 𝐵 ) ) |
15 |
10 14
|
sylib |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐵 ≠ ∅ ) → 𝐴 ⊊ ( 𝐴 ∪ 𝐵 ) ) |