| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ecopopr.1 |  |-  .~ = { <. x , y >. | ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z .+ u ) = ( w .+ v ) ) ) } | 
						
							| 2 |  | ecopopr.com |  |-  ( x .+ y ) = ( y .+ x ) | 
						
							| 3 |  | opabssxp |  |-  { <. x , y >. | ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z .+ u ) = ( w .+ v ) ) ) } C_ ( ( S X. S ) X. ( S X. S ) ) | 
						
							| 4 | 1 3 | eqsstri |  |-  .~ C_ ( ( S X. S ) X. ( S X. S ) ) | 
						
							| 5 | 4 | brel |  |-  ( A .~ B -> ( A e. ( S X. S ) /\ B e. ( S X. S ) ) ) | 
						
							| 6 |  | eqid |  |-  ( S X. S ) = ( S X. S ) | 
						
							| 7 |  | breq1 |  |-  ( <. f , g >. = A -> ( <. f , g >. .~ <. h , t >. <-> A .~ <. h , t >. ) ) | 
						
							| 8 |  | breq2 |  |-  ( <. f , g >. = A -> ( <. h , t >. .~ <. f , g >. <-> <. h , t >. .~ A ) ) | 
						
							| 9 | 7 8 | bibi12d |  |-  ( <. f , g >. = A -> ( ( <. f , g >. .~ <. h , t >. <-> <. h , t >. .~ <. f , g >. ) <-> ( A .~ <. h , t >. <-> <. h , t >. .~ A ) ) ) | 
						
							| 10 |  | breq2 |  |-  ( <. h , t >. = B -> ( A .~ <. h , t >. <-> A .~ B ) ) | 
						
							| 11 |  | breq1 |  |-  ( <. h , t >. = B -> ( <. h , t >. .~ A <-> B .~ A ) ) | 
						
							| 12 | 10 11 | bibi12d |  |-  ( <. h , t >. = B -> ( ( A .~ <. h , t >. <-> <. h , t >. .~ A ) <-> ( A .~ B <-> B .~ A ) ) ) | 
						
							| 13 | 1 | ecopoveq |  |-  ( ( ( f e. S /\ g e. S ) /\ ( h e. S /\ t e. S ) ) -> ( <. f , g >. .~ <. h , t >. <-> ( f .+ t ) = ( g .+ h ) ) ) | 
						
							| 14 |  | vex |  |-  f e. _V | 
						
							| 15 |  | vex |  |-  t e. _V | 
						
							| 16 | 14 15 2 | caovcom |  |-  ( f .+ t ) = ( t .+ f ) | 
						
							| 17 |  | vex |  |-  g e. _V | 
						
							| 18 |  | vex |  |-  h e. _V | 
						
							| 19 | 17 18 2 | caovcom |  |-  ( g .+ h ) = ( h .+ g ) | 
						
							| 20 | 16 19 | eqeq12i |  |-  ( ( f .+ t ) = ( g .+ h ) <-> ( t .+ f ) = ( h .+ g ) ) | 
						
							| 21 |  | eqcom |  |-  ( ( t .+ f ) = ( h .+ g ) <-> ( h .+ g ) = ( t .+ f ) ) | 
						
							| 22 | 20 21 | bitri |  |-  ( ( f .+ t ) = ( g .+ h ) <-> ( h .+ g ) = ( t .+ f ) ) | 
						
							| 23 | 13 22 | bitrdi |  |-  ( ( ( f e. S /\ g e. S ) /\ ( h e. S /\ t e. S ) ) -> ( <. f , g >. .~ <. h , t >. <-> ( h .+ g ) = ( t .+ f ) ) ) | 
						
							| 24 | 1 | ecopoveq |  |-  ( ( ( h e. S /\ t e. S ) /\ ( f e. S /\ g e. S ) ) -> ( <. h , t >. .~ <. f , g >. <-> ( h .+ g ) = ( t .+ f ) ) ) | 
						
							| 25 | 24 | ancoms |  |-  ( ( ( f e. S /\ g e. S ) /\ ( h e. S /\ t e. S ) ) -> ( <. h , t >. .~ <. f , g >. <-> ( h .+ g ) = ( t .+ f ) ) ) | 
						
							| 26 | 23 25 | bitr4d |  |-  ( ( ( f e. S /\ g e. S ) /\ ( h e. S /\ t e. S ) ) -> ( <. f , g >. .~ <. h , t >. <-> <. h , t >. .~ <. f , g >. ) ) | 
						
							| 27 | 6 9 12 26 | 2optocl |  |-  ( ( A e. ( S X. S ) /\ B e. ( S X. S ) ) -> ( A .~ B <-> B .~ A ) ) | 
						
							| 28 | 5 27 | syl |  |-  ( A .~ B -> ( A .~ B <-> B .~ A ) ) | 
						
							| 29 | 28 | ibi |  |-  ( A .~ B -> B .~ A ) |