| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eelTTT.1 |
|- ( T. -> ph ) |
| 2 |
|
eelTTT.2 |
|- ( T. -> ps ) |
| 3 |
|
eelTTT.3 |
|- ( T. -> ch ) |
| 4 |
|
eelTTT.4 |
|- ( ( ph /\ ps /\ ch ) -> th ) |
| 5 |
|
truan |
|- ( ( T. /\ ch ) <-> ch ) |
| 6 |
|
3anass |
|- ( ( T. /\ ps /\ ch ) <-> ( T. /\ ( ps /\ ch ) ) ) |
| 7 |
|
truan |
|- ( ( T. /\ ( ps /\ ch ) ) <-> ( ps /\ ch ) ) |
| 8 |
6 7
|
bitri |
|- ( ( T. /\ ps /\ ch ) <-> ( ps /\ ch ) ) |
| 9 |
1 4
|
syl3an1 |
|- ( ( T. /\ ps /\ ch ) -> th ) |
| 10 |
8 9
|
sylbir |
|- ( ( ps /\ ch ) -> th ) |
| 11 |
2 10
|
sylan |
|- ( ( T. /\ ch ) -> th ) |
| 12 |
5 11
|
sylbir |
|- ( ch -> th ) |
| 13 |
3 12
|
syl |
|- ( T. -> th ) |
| 14 |
13
|
mptru |
|- th |