| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elab6g |  |-  ( A e. B -> ( A e. { x | ph } <-> A. x ( x = A -> ph ) ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A e. B /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A e. { x | ph } <-> A. x ( x = A -> ph ) ) ) | 
						
							| 3 |  | elisset |  |-  ( A e. B -> E. x x = A ) | 
						
							| 4 |  | biimp |  |-  ( ( ph <-> ps ) -> ( ph -> ps ) ) | 
						
							| 5 | 4 | imim3i |  |-  ( ( x = A -> ( ph <-> ps ) ) -> ( ( x = A -> ph ) -> ( x = A -> ps ) ) ) | 
						
							| 6 | 5 | al2imi |  |-  ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A. x ( x = A -> ph ) -> A. x ( x = A -> ps ) ) ) | 
						
							| 7 |  | 19.23v |  |-  ( A. x ( x = A -> ps ) <-> ( E. x x = A -> ps ) ) | 
						
							| 8 | 6 7 | imbitrdi |  |-  ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A. x ( x = A -> ph ) -> ( E. x x = A -> ps ) ) ) | 
						
							| 9 | 8 | com3r |  |-  ( E. x x = A -> ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A. x ( x = A -> ph ) -> ps ) ) ) | 
						
							| 10 |  | biimpr |  |-  ( ( ph <-> ps ) -> ( ps -> ph ) ) | 
						
							| 11 | 10 | imim2i |  |-  ( ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( ps -> ph ) ) ) | 
						
							| 12 | 11 | alimi |  |-  ( A. x ( x = A -> ( ph <-> ps ) ) -> A. x ( x = A -> ( ps -> ph ) ) ) | 
						
							| 13 |  | bi2.04 |  |-  ( ( x = A -> ( ps -> ph ) ) <-> ( ps -> ( x = A -> ph ) ) ) | 
						
							| 14 | 13 | albii |  |-  ( A. x ( x = A -> ( ps -> ph ) ) <-> A. x ( ps -> ( x = A -> ph ) ) ) | 
						
							| 15 |  | 19.21v |  |-  ( A. x ( ps -> ( x = A -> ph ) ) <-> ( ps -> A. x ( x = A -> ph ) ) ) | 
						
							| 16 | 14 15 | sylbb |  |-  ( A. x ( x = A -> ( ps -> ph ) ) -> ( ps -> A. x ( x = A -> ph ) ) ) | 
						
							| 17 | 12 16 | syl |  |-  ( A. x ( x = A -> ( ph <-> ps ) ) -> ( ps -> A. x ( x = A -> ph ) ) ) | 
						
							| 18 | 17 | a1i |  |-  ( E. x x = A -> ( A. x ( x = A -> ( ph <-> ps ) ) -> ( ps -> A. x ( x = A -> ph ) ) ) ) | 
						
							| 19 | 9 18 | impbidd |  |-  ( E. x x = A -> ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A. x ( x = A -> ph ) <-> ps ) ) ) | 
						
							| 20 | 3 19 | syl |  |-  ( A e. B -> ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A. x ( x = A -> ph ) <-> ps ) ) ) | 
						
							| 21 | 20 | imp |  |-  ( ( A e. B /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A. x ( x = A -> ph ) <-> ps ) ) | 
						
							| 22 | 2 21 | bitrd |  |-  ( ( A e. B /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A e. { x | ph } <-> ps ) ) |