| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elab6g | ⊢ ( 𝐴  ∈  𝐵  →  ( 𝐴  ∈  { 𝑥  ∣  𝜑 }  ↔  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 ) ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐴  ∈  𝐵  ∧  ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( 𝐴  ∈  { 𝑥  ∣  𝜑 }  ↔  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 ) ) ) | 
						
							| 3 |  | elisset | ⊢ ( 𝐴  ∈  𝐵  →  ∃ 𝑥 𝑥  =  𝐴 ) | 
						
							| 4 |  | biimp | ⊢ ( ( 𝜑  ↔  𝜓 )  →  ( 𝜑  →  𝜓 ) ) | 
						
							| 5 | 4 | imim3i | ⊢ ( ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ( ( 𝑥  =  𝐴  →  𝜑 )  →  ( 𝑥  =  𝐴  →  𝜓 ) ) ) | 
						
							| 6 | 5 | al2imi | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 )  →  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜓 ) ) ) | 
						
							| 7 |  | 19.23v | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜓 )  ↔  ( ∃ 𝑥 𝑥  =  𝐴  →  𝜓 ) ) | 
						
							| 8 | 6 7 | imbitrdi | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 )  →  ( ∃ 𝑥 𝑥  =  𝐴  →  𝜓 ) ) ) | 
						
							| 9 | 8 | com3r | ⊢ ( ∃ 𝑥 𝑥  =  𝐴  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 )  →  𝜓 ) ) ) | 
						
							| 10 |  | biimpr | ⊢ ( ( 𝜑  ↔  𝜓 )  →  ( 𝜓  →  𝜑 ) ) | 
						
							| 11 | 10 | imim2i | ⊢ ( ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ( 𝑥  =  𝐴  →  ( 𝜓  →  𝜑 ) ) ) | 
						
							| 12 | 11 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜓  →  𝜑 ) ) ) | 
						
							| 13 |  | bi2.04 | ⊢ ( ( 𝑥  =  𝐴  →  ( 𝜓  →  𝜑 ) )  ↔  ( 𝜓  →  ( 𝑥  =  𝐴  →  𝜑 ) ) ) | 
						
							| 14 | 13 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜓  →  𝜑 ) )  ↔  ∀ 𝑥 ( 𝜓  →  ( 𝑥  =  𝐴  →  𝜑 ) ) ) | 
						
							| 15 |  | 19.21v | ⊢ ( ∀ 𝑥 ( 𝜓  →  ( 𝑥  =  𝐴  →  𝜑 ) )  ↔  ( 𝜓  →  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 ) ) ) | 
						
							| 16 | 14 15 | sylbb | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜓  →  𝜑 ) )  →  ( 𝜓  →  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 ) ) ) | 
						
							| 17 | 12 16 | syl | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ( 𝜓  →  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 ) ) ) | 
						
							| 18 | 17 | a1i | ⊢ ( ∃ 𝑥 𝑥  =  𝐴  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ( 𝜓  →  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 ) ) ) ) | 
						
							| 19 | 9 18 | impbidd | ⊢ ( ∃ 𝑥 𝑥  =  𝐴  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 )  ↔  𝜓 ) ) ) | 
						
							| 20 | 3 19 | syl | ⊢ ( 𝐴  ∈  𝐵  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 )  ↔  𝜓 ) ) ) | 
						
							| 21 | 20 | imp | ⊢ ( ( 𝐴  ∈  𝐵  ∧  ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 )  ↔  𝜓 ) ) | 
						
							| 22 | 2 21 | bitrd | ⊢ ( ( 𝐴  ∈  𝐵  ∧  ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( 𝐴  ∈  { 𝑥  ∣  𝜑 }  ↔  𝜓 ) ) |