Step |
Hyp |
Ref |
Expression |
1 |
|
flimval.1 |
|- X = U. J |
2 |
|
anass |
|- ( ( ( ( J e. Top /\ F e. U. ran Fil ) /\ F C_ ~P X ) /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) <-> ( ( J e. Top /\ F e. U. ran Fil ) /\ ( F C_ ~P X /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) ) |
3 |
|
df-3an |
|- ( ( J e. Top /\ F e. U. ran Fil /\ F C_ ~P X ) <-> ( ( J e. Top /\ F e. U. ran Fil ) /\ F C_ ~P X ) ) |
4 |
3
|
anbi1i |
|- ( ( ( J e. Top /\ F e. U. ran Fil /\ F C_ ~P X ) /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) <-> ( ( ( J e. Top /\ F e. U. ran Fil ) /\ F C_ ~P X ) /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) |
5 |
|
df-flim |
|- fLim = ( j e. Top , f e. U. ran Fil |-> { x e. U. j | ( ( ( nei ` j ) ` { x } ) C_ f /\ f C_ ~P U. j ) } ) |
6 |
5
|
elmpocl |
|- ( A e. ( J fLim F ) -> ( J e. Top /\ F e. U. ran Fil ) ) |
7 |
1
|
flimval |
|- ( ( J e. Top /\ F e. U. ran Fil ) -> ( J fLim F ) = { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } ) |
8 |
7
|
eleq2d |
|- ( ( J e. Top /\ F e. U. ran Fil ) -> ( A e. ( J fLim F ) <-> A e. { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } ) ) |
9 |
|
sneq |
|- ( x = A -> { x } = { A } ) |
10 |
9
|
fveq2d |
|- ( x = A -> ( ( nei ` J ) ` { x } ) = ( ( nei ` J ) ` { A } ) ) |
11 |
10
|
sseq1d |
|- ( x = A -> ( ( ( nei ` J ) ` { x } ) C_ F <-> ( ( nei ` J ) ` { A } ) C_ F ) ) |
12 |
11
|
anbi1d |
|- ( x = A -> ( ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) <-> ( ( ( nei ` J ) ` { A } ) C_ F /\ F C_ ~P X ) ) ) |
13 |
12
|
biancomd |
|- ( x = A -> ( ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) <-> ( F C_ ~P X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) |
14 |
13
|
elrab |
|- ( A e. { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } <-> ( A e. X /\ ( F C_ ~P X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) |
15 |
|
an12 |
|- ( ( A e. X /\ ( F C_ ~P X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) <-> ( F C_ ~P X /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) |
16 |
14 15
|
bitri |
|- ( A e. { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } <-> ( F C_ ~P X /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) |
17 |
8 16
|
bitrdi |
|- ( ( J e. Top /\ F e. U. ran Fil ) -> ( A e. ( J fLim F ) <-> ( F C_ ~P X /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) ) |
18 |
6 17
|
biadanii |
|- ( A e. ( J fLim F ) <-> ( ( J e. Top /\ F e. U. ran Fil ) /\ ( F C_ ~P X /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) ) |
19 |
2 4 18
|
3bitr4ri |
|- ( A e. ( J fLim F ) <-> ( ( J e. Top /\ F e. U. ran Fil /\ F C_ ~P X ) /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) |