Metamath Proof Explorer


Theorem elflim2

Description: The predicate "is a limit point of a filter." (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Hypothesis flimval.1 𝑋 = 𝐽
Assertion elflim2 ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋 ) ∧ ( 𝐴𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 flimval.1 𝑋 = 𝐽
2 anass ( ( ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) ∧ 𝐹 ⊆ 𝒫 𝑋 ) ∧ ( 𝐴𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) ∧ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐴𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) )
3 df-3an ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) ∧ 𝐹 ⊆ 𝒫 𝑋 ) )
4 3 anbi1i ( ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋 ) ∧ ( 𝐴𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ↔ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) ∧ 𝐹 ⊆ 𝒫 𝑋 ) ∧ ( 𝐴𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) )
5 df-flim fLim = ( 𝑗 ∈ Top , 𝑓 ran Fil ↦ { 𝑥 𝑗 ∣ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑥 } ) ⊆ 𝑓𝑓 ⊆ 𝒫 𝑗 ) } )
6 5 elmpocl ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) )
7 1 flimval ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) → ( 𝐽 fLim 𝐹 ) = { 𝑥𝑋 ∣ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋 ) } )
8 7 eleq2d ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ 𝐴 ∈ { 𝑥𝑋 ∣ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋 ) } ) )
9 sneq ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } )
10 9 fveq2d ( 𝑥 = 𝐴 → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )
11 10 sseq1d ( 𝑥 = 𝐴 → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ↔ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) )
12 11 anbi1d ( 𝑥 = 𝐴 → ( ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋 ) ) )
13 12 biancomd ( 𝑥 = 𝐴 → ( ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋 ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) )
14 13 elrab ( 𝐴 ∈ { 𝑥𝑋 ∣ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋 ) } ↔ ( 𝐴𝑋 ∧ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) )
15 an12 ( ( 𝐴𝑋 ∧ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐴𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) )
16 14 15 bitri ( 𝐴 ∈ { 𝑥𝑋 ∣ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋 ) } ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐴𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) )
17 8 16 bitrdi ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐴𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) )
18 6 17 biadanii ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ) ∧ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐴𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) ) )
19 2 4 18 3bitr4ri ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋 ) ∧ ( 𝐴𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝐹 ) ) )