Step |
Hyp |
Ref |
Expression |
1 |
|
elfunsALTV |
|- ( F e. FunsALTV <-> ( ,~ F e. CnvRefRels /\ F e. Rels ) ) |
2 |
|
cosselcnvrefrels5 |
|- ( ,~ F e. CnvRefRels <-> ( A. x e. ran F A. y e. ran F ( x = y \/ ( [ x ] `' F i^i [ y ] `' F ) = (/) ) /\ ,~ F e. Rels ) ) |
3 |
|
cosselrels |
|- ( F e. Rels -> ,~ F e. Rels ) |
4 |
3
|
biantrud |
|- ( F e. Rels -> ( A. x e. ran F A. y e. ran F ( x = y \/ ( [ x ] `' F i^i [ y ] `' F ) = (/) ) <-> ( A. x e. ran F A. y e. ran F ( x = y \/ ( [ x ] `' F i^i [ y ] `' F ) = (/) ) /\ ,~ F e. Rels ) ) ) |
5 |
2 4
|
bitr4id |
|- ( F e. Rels -> ( ,~ F e. CnvRefRels <-> A. x e. ran F A. y e. ran F ( x = y \/ ( [ x ] `' F i^i [ y ] `' F ) = (/) ) ) ) |
6 |
5
|
pm5.32ri |
|- ( ( ,~ F e. CnvRefRels /\ F e. Rels ) <-> ( A. x e. ran F A. y e. ran F ( x = y \/ ( [ x ] `' F i^i [ y ] `' F ) = (/) ) /\ F e. Rels ) ) |
7 |
1 6
|
bitri |
|- ( F e. FunsALTV <-> ( A. x e. ran F A. y e. ran F ( x = y \/ ( [ x ] `' F i^i [ y ] `' F ) = (/) ) /\ F e. Rels ) ) |