Metamath Proof Explorer


Theorem elfunsALTV5

Description: Elementhood in the class of functions. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion elfunsALTV5 FFunsALTVxranFyranFx=yxF-1yF-1=FRels

Proof

Step Hyp Ref Expression
1 elfunsALTV FFunsALTVFCnvRefRelsFRels
2 cosselcnvrefrels5 FCnvRefRelsxranFyranFx=yxF-1yF-1=FRels
3 cosselrels FRelsFRels
4 3 biantrud FRelsxranFyranFx=yxF-1yF-1=xranFyranFx=yxF-1yF-1=FRels
5 2 4 bitr4id FRelsFCnvRefRelsxranFyranFx=yxF-1yF-1=
6 5 pm5.32ri FCnvRefRelsFRelsxranFyranFx=yxF-1yF-1=FRels
7 1 6 bitri FFunsALTVxranFyranFx=yxF-1yF-1=FRels