| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elimdelov.1 |  |-  ( ph -> C e. ( A F B ) ) | 
						
							| 2 |  | elimdelov.2 |  |-  Z e. ( X F Y ) | 
						
							| 3 |  | iftrue |  |-  ( ph -> if ( ph , C , Z ) = C ) | 
						
							| 4 |  | iftrue |  |-  ( ph -> if ( ph , A , X ) = A ) | 
						
							| 5 |  | iftrue |  |-  ( ph -> if ( ph , B , Y ) = B ) | 
						
							| 6 | 4 5 | oveq12d |  |-  ( ph -> ( if ( ph , A , X ) F if ( ph , B , Y ) ) = ( A F B ) ) | 
						
							| 7 | 1 3 6 | 3eltr4d |  |-  ( ph -> if ( ph , C , Z ) e. ( if ( ph , A , X ) F if ( ph , B , Y ) ) ) | 
						
							| 8 |  | iffalse |  |-  ( -. ph -> if ( ph , C , Z ) = Z ) | 
						
							| 9 | 8 2 | eqeltrdi |  |-  ( -. ph -> if ( ph , C , Z ) e. ( X F Y ) ) | 
						
							| 10 |  | iffalse |  |-  ( -. ph -> if ( ph , A , X ) = X ) | 
						
							| 11 |  | iffalse |  |-  ( -. ph -> if ( ph , B , Y ) = Y ) | 
						
							| 12 | 10 11 | oveq12d |  |-  ( -. ph -> ( if ( ph , A , X ) F if ( ph , B , Y ) ) = ( X F Y ) ) | 
						
							| 13 | 9 12 | eleqtrrd |  |-  ( -. ph -> if ( ph , C , Z ) e. ( if ( ph , A , X ) F if ( ph , B , Y ) ) ) | 
						
							| 14 | 7 13 | pm2.61i |  |-  if ( ph , C , Z ) e. ( if ( ph , A , X ) F if ( ph , B , Y ) ) |