| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elimdelov.1 | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 𝐹 𝐵 ) ) | 
						
							| 2 |  | elimdelov.2 | ⊢ 𝑍  ∈  ( 𝑋 𝐹 𝑌 ) | 
						
							| 3 |  | iftrue | ⊢ ( 𝜑  →  if ( 𝜑 ,  𝐶 ,  𝑍 )  =  𝐶 ) | 
						
							| 4 |  | iftrue | ⊢ ( 𝜑  →  if ( 𝜑 ,  𝐴 ,  𝑋 )  =  𝐴 ) | 
						
							| 5 |  | iftrue | ⊢ ( 𝜑  →  if ( 𝜑 ,  𝐵 ,  𝑌 )  =  𝐵 ) | 
						
							| 6 | 4 5 | oveq12d | ⊢ ( 𝜑  →  ( if ( 𝜑 ,  𝐴 ,  𝑋 ) 𝐹 if ( 𝜑 ,  𝐵 ,  𝑌 ) )  =  ( 𝐴 𝐹 𝐵 ) ) | 
						
							| 7 | 1 3 6 | 3eltr4d | ⊢ ( 𝜑  →  if ( 𝜑 ,  𝐶 ,  𝑍 )  ∈  ( if ( 𝜑 ,  𝐴 ,  𝑋 ) 𝐹 if ( 𝜑 ,  𝐵 ,  𝑌 ) ) ) | 
						
							| 8 |  | iffalse | ⊢ ( ¬  𝜑  →  if ( 𝜑 ,  𝐶 ,  𝑍 )  =  𝑍 ) | 
						
							| 9 | 8 2 | eqeltrdi | ⊢ ( ¬  𝜑  →  if ( 𝜑 ,  𝐶 ,  𝑍 )  ∈  ( 𝑋 𝐹 𝑌 ) ) | 
						
							| 10 |  | iffalse | ⊢ ( ¬  𝜑  →  if ( 𝜑 ,  𝐴 ,  𝑋 )  =  𝑋 ) | 
						
							| 11 |  | iffalse | ⊢ ( ¬  𝜑  →  if ( 𝜑 ,  𝐵 ,  𝑌 )  =  𝑌 ) | 
						
							| 12 | 10 11 | oveq12d | ⊢ ( ¬  𝜑  →  ( if ( 𝜑 ,  𝐴 ,  𝑋 ) 𝐹 if ( 𝜑 ,  𝐵 ,  𝑌 ) )  =  ( 𝑋 𝐹 𝑌 ) ) | 
						
							| 13 | 9 12 | eleqtrrd | ⊢ ( ¬  𝜑  →  if ( 𝜑 ,  𝐶 ,  𝑍 )  ∈  ( if ( 𝜑 ,  𝐴 ,  𝑋 ) 𝐹 if ( 𝜑 ,  𝐵 ,  𝑌 ) ) ) | 
						
							| 14 | 7 13 | pm2.61i | ⊢ if ( 𝜑 ,  𝐶 ,  𝑍 )  ∈  ( if ( 𝜑 ,  𝐴 ,  𝑋 ) 𝐹 if ( 𝜑 ,  𝐵 ,  𝑌 ) ) |