Metamath Proof Explorer


Theorem elmade2

Description: Membership in the made function in terms of the old function. (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion elmade2
|- ( A e. On -> ( X e. ( _M ` A ) <-> E. l e. ~P ( _Old ` A ) E. r e. ~P ( _Old ` A ) ( l <

Proof

Step Hyp Ref Expression
1 elmade
 |-  ( A e. On -> ( X e. ( _M ` A ) <-> E. l e. ~P U. ( _M " A ) E. r e. ~P U. ( _M " A ) ( l <
2 oldval
 |-  ( A e. On -> ( _Old ` A ) = U. ( _M " A ) )
3 2 pweqd
 |-  ( A e. On -> ~P ( _Old ` A ) = ~P U. ( _M " A ) )
4 3 rexeqdv
 |-  ( A e. On -> ( E. r e. ~P ( _Old ` A ) ( l < E. r e. ~P U. ( _M " A ) ( l <
5 3 4 rexeqbidv
 |-  ( A e. On -> ( E. l e. ~P ( _Old ` A ) E. r e. ~P ( _Old ` A ) ( l < E. l e. ~P U. ( _M " A ) E. r e. ~P U. ( _M " A ) ( l <
6 1 5 bitr4d
 |-  ( A e. On -> ( X e. ( _M ` A ) <-> E. l e. ~P ( _Old ` A ) E. r e. ~P ( _Old ` A ) ( l <