Metamath Proof Explorer


Theorem equviniOLD

Description: Obsolete version of equvini as of 16-Sep-2023. (Contributed by NM, 10-Jan-1993) (Proof shortened by Andrew Salmon, 25-May-2011) (Proof shortened by Wolf Lammen, 15-Sep-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion equviniOLD
|- ( x = y -> E. z ( x = z /\ z = y ) )

Proof

Step Hyp Ref Expression
1 equtr
 |-  ( z = x -> ( x = y -> z = y ) )
2 equeuclr
 |-  ( z = y -> ( x = y -> x = z ) )
3 2 anc2ri
 |-  ( z = y -> ( x = y -> ( x = z /\ z = y ) ) )
4 1 3 syli
 |-  ( z = x -> ( x = y -> ( x = z /\ z = y ) ) )
5 19.8a
 |-  ( ( x = z /\ z = y ) -> E. z ( x = z /\ z = y ) )
6 4 5 syl6
 |-  ( z = x -> ( x = y -> E. z ( x = z /\ z = y ) ) )
7 ax13
 |-  ( -. z = x -> ( x = y -> A. z x = y ) )
8 ax6e
 |-  E. z z = y
9 8 3 eximii
 |-  E. z ( x = y -> ( x = z /\ z = y ) )
10 9 19.35i
 |-  ( A. z x = y -> E. z ( x = z /\ z = y ) )
11 7 10 syl6
 |-  ( -. z = x -> ( x = y -> E. z ( x = z /\ z = y ) ) )
12 6 11 pm2.61i
 |-  ( x = y -> E. z ( x = z /\ z = y ) )