| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evls1scasrng.q |
|- Q = ( S evalSub1 R ) |
| 2 |
|
evls1scasrng.o |
|- O = ( eval1 ` S ) |
| 3 |
|
evls1scasrng.w |
|- W = ( Poly1 ` U ) |
| 4 |
|
evls1scasrng.u |
|- U = ( S |`s R ) |
| 5 |
|
evls1scasrng.p |
|- P = ( Poly1 ` S ) |
| 6 |
|
evls1scasrng.b |
|- B = ( Base ` S ) |
| 7 |
|
evls1scasrng.a |
|- A = ( algSc ` W ) |
| 8 |
|
evls1scasrng.c |
|- C = ( algSc ` P ) |
| 9 |
|
evls1scasrng.s |
|- ( ph -> S e. CRing ) |
| 10 |
|
evls1scasrng.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
| 11 |
|
evls1scasrng.x |
|- ( ph -> X e. R ) |
| 12 |
6
|
ressid |
|- ( S e. CRing -> ( S |`s B ) = S ) |
| 13 |
12
|
eqcomd |
|- ( S e. CRing -> S = ( S |`s B ) ) |
| 14 |
9 13
|
syl |
|- ( ph -> S = ( S |`s B ) ) |
| 15 |
14
|
fveq2d |
|- ( ph -> ( Poly1 ` S ) = ( Poly1 ` ( S |`s B ) ) ) |
| 16 |
5 15
|
eqtrid |
|- ( ph -> P = ( Poly1 ` ( S |`s B ) ) ) |
| 17 |
16
|
fveq2d |
|- ( ph -> ( algSc ` P ) = ( algSc ` ( Poly1 ` ( S |`s B ) ) ) ) |
| 18 |
8 17
|
eqtrid |
|- ( ph -> C = ( algSc ` ( Poly1 ` ( S |`s B ) ) ) ) |
| 19 |
18
|
fveq1d |
|- ( ph -> ( C ` X ) = ( ( algSc ` ( Poly1 ` ( S |`s B ) ) ) ` X ) ) |
| 20 |
19
|
fveq2d |
|- ( ph -> ( ( S evalSub1 B ) ` ( C ` X ) ) = ( ( S evalSub1 B ) ` ( ( algSc ` ( Poly1 ` ( S |`s B ) ) ) ` X ) ) ) |
| 21 |
|
eqid |
|- ( S evalSub1 B ) = ( S evalSub1 B ) |
| 22 |
|
eqid |
|- ( Poly1 ` ( S |`s B ) ) = ( Poly1 ` ( S |`s B ) ) |
| 23 |
|
eqid |
|- ( S |`s B ) = ( S |`s B ) |
| 24 |
|
eqid |
|- ( algSc ` ( Poly1 ` ( S |`s B ) ) ) = ( algSc ` ( Poly1 ` ( S |`s B ) ) ) |
| 25 |
|
crngring |
|- ( S e. CRing -> S e. Ring ) |
| 26 |
6
|
subrgid |
|- ( S e. Ring -> B e. ( SubRing ` S ) ) |
| 27 |
9 25 26
|
3syl |
|- ( ph -> B e. ( SubRing ` S ) ) |
| 28 |
6
|
subrgss |
|- ( R e. ( SubRing ` S ) -> R C_ B ) |
| 29 |
10 28
|
syl |
|- ( ph -> R C_ B ) |
| 30 |
29 11
|
sseldd |
|- ( ph -> X e. B ) |
| 31 |
21 22 23 6 24 9 27 30
|
evls1sca |
|- ( ph -> ( ( S evalSub1 B ) ` ( ( algSc ` ( Poly1 ` ( S |`s B ) ) ) ` X ) ) = ( B X. { X } ) ) |
| 32 |
20 31
|
eqtrd |
|- ( ph -> ( ( S evalSub1 B ) ` ( C ` X ) ) = ( B X. { X } ) ) |
| 33 |
2 6
|
evl1fval1 |
|- O = ( S evalSub1 B ) |
| 34 |
33
|
a1i |
|- ( ph -> O = ( S evalSub1 B ) ) |
| 35 |
34
|
fveq1d |
|- ( ph -> ( O ` ( C ` X ) ) = ( ( S evalSub1 B ) ` ( C ` X ) ) ) |
| 36 |
1 3 4 6 7 9 10 11
|
evls1sca |
|- ( ph -> ( Q ` ( A ` X ) ) = ( B X. { X } ) ) |
| 37 |
32 35 36
|
3eqtr4rd |
|- ( ph -> ( Q ` ( A ` X ) ) = ( O ` ( C ` X ) ) ) |