| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evls1scasrng.q |
⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) |
| 2 |
|
evls1scasrng.o |
⊢ 𝑂 = ( eval1 ‘ 𝑆 ) |
| 3 |
|
evls1scasrng.w |
⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) |
| 4 |
|
evls1scasrng.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
| 5 |
|
evls1scasrng.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑆 ) |
| 6 |
|
evls1scasrng.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 7 |
|
evls1scasrng.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
| 8 |
|
evls1scasrng.c |
⊢ 𝐶 = ( algSc ‘ 𝑃 ) |
| 9 |
|
evls1scasrng.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
| 10 |
|
evls1scasrng.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
| 11 |
|
evls1scasrng.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) |
| 12 |
6
|
ressid |
⊢ ( 𝑆 ∈ CRing → ( 𝑆 ↾s 𝐵 ) = 𝑆 ) |
| 13 |
12
|
eqcomd |
⊢ ( 𝑆 ∈ CRing → 𝑆 = ( 𝑆 ↾s 𝐵 ) ) |
| 14 |
9 13
|
syl |
⊢ ( 𝜑 → 𝑆 = ( 𝑆 ↾s 𝐵 ) ) |
| 15 |
14
|
fveq2d |
⊢ ( 𝜑 → ( Poly1 ‘ 𝑆 ) = ( Poly1 ‘ ( 𝑆 ↾s 𝐵 ) ) ) |
| 16 |
5 15
|
eqtrid |
⊢ ( 𝜑 → 𝑃 = ( Poly1 ‘ ( 𝑆 ↾s 𝐵 ) ) ) |
| 17 |
16
|
fveq2d |
⊢ ( 𝜑 → ( algSc ‘ 𝑃 ) = ( algSc ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐵 ) ) ) ) |
| 18 |
8 17
|
eqtrid |
⊢ ( 𝜑 → 𝐶 = ( algSc ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐵 ) ) ) ) |
| 19 |
18
|
fveq1d |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝑋 ) = ( ( algSc ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐵 ) ) ) ‘ 𝑋 ) ) |
| 20 |
19
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑆 evalSub1 𝐵 ) ‘ ( 𝐶 ‘ 𝑋 ) ) = ( ( 𝑆 evalSub1 𝐵 ) ‘ ( ( algSc ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐵 ) ) ) ‘ 𝑋 ) ) ) |
| 21 |
|
eqid |
⊢ ( 𝑆 evalSub1 𝐵 ) = ( 𝑆 evalSub1 𝐵 ) |
| 22 |
|
eqid |
⊢ ( Poly1 ‘ ( 𝑆 ↾s 𝐵 ) ) = ( Poly1 ‘ ( 𝑆 ↾s 𝐵 ) ) |
| 23 |
|
eqid |
⊢ ( 𝑆 ↾s 𝐵 ) = ( 𝑆 ↾s 𝐵 ) |
| 24 |
|
eqid |
⊢ ( algSc ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐵 ) ) ) = ( algSc ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐵 ) ) ) |
| 25 |
|
crngring |
⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) |
| 26 |
6
|
subrgid |
⊢ ( 𝑆 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| 27 |
9 25 26
|
3syl |
⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| 28 |
6
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐵 ) |
| 29 |
10 28
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ 𝐵 ) |
| 30 |
29 11
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 31 |
21 22 23 6 24 9 27 30
|
evls1sca |
⊢ ( 𝜑 → ( ( 𝑆 evalSub1 𝐵 ) ‘ ( ( algSc ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐵 ) ) ) ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |
| 32 |
20 31
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 evalSub1 𝐵 ) ‘ ( 𝐶 ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |
| 33 |
2 6
|
evl1fval1 |
⊢ 𝑂 = ( 𝑆 evalSub1 𝐵 ) |
| 34 |
33
|
a1i |
⊢ ( 𝜑 → 𝑂 = ( 𝑆 evalSub1 𝐵 ) ) |
| 35 |
34
|
fveq1d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐶 ‘ 𝑋 ) ) = ( ( 𝑆 evalSub1 𝐵 ) ‘ ( 𝐶 ‘ 𝑋 ) ) ) |
| 36 |
1 3 4 6 7 9 10 11
|
evls1sca |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |
| 37 |
32 35 36
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝑂 ‘ ( 𝐶 ‘ 𝑋 ) ) ) |