| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1ores |  |-  ( ( F : A -1-1-> B /\ C C_ A ) -> ( F |` C ) : C -1-1-onto-> ( F " C ) ) | 
						
							| 2 |  | f1oenfi |  |-  ( ( C e. Fin /\ ( F |` C ) : C -1-1-onto-> ( F " C ) ) -> C ~~ ( F " C ) ) | 
						
							| 3 |  | ensymfib |  |-  ( C e. Fin -> ( C ~~ ( F " C ) <-> ( F " C ) ~~ C ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( C e. Fin /\ ( F |` C ) : C -1-1-onto-> ( F " C ) ) -> ( C ~~ ( F " C ) <-> ( F " C ) ~~ C ) ) | 
						
							| 5 | 2 4 | mpbid |  |-  ( ( C e. Fin /\ ( F |` C ) : C -1-1-onto-> ( F " C ) ) -> ( F " C ) ~~ C ) | 
						
							| 6 | 1 5 | sylan2 |  |-  ( ( C e. Fin /\ ( F : A -1-1-> B /\ C C_ A ) ) -> ( F " C ) ~~ C ) | 
						
							| 7 | 6 | 3impb |  |-  ( ( C e. Fin /\ F : A -1-1-> B /\ C C_ A ) -> ( F " C ) ~~ C ) | 
						
							| 8 | 7 | 3coml |  |-  ( ( F : A -1-1-> B /\ C C_ A /\ C e. Fin ) -> ( F " C ) ~~ C ) |