| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1ores | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐶  ⊆  𝐴 )  →  ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹  “  𝐶 ) ) | 
						
							| 2 |  | f1oenfi | ⊢ ( ( 𝐶  ∈  Fin  ∧  ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹  “  𝐶 ) )  →  𝐶  ≈  ( 𝐹  “  𝐶 ) ) | 
						
							| 3 |  | ensymfib | ⊢ ( 𝐶  ∈  Fin  →  ( 𝐶  ≈  ( 𝐹  “  𝐶 )  ↔  ( 𝐹  “  𝐶 )  ≈  𝐶 ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝐶  ∈  Fin  ∧  ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹  “  𝐶 ) )  →  ( 𝐶  ≈  ( 𝐹  “  𝐶 )  ↔  ( 𝐹  “  𝐶 )  ≈  𝐶 ) ) | 
						
							| 5 | 2 4 | mpbid | ⊢ ( ( 𝐶  ∈  Fin  ∧  ( 𝐹  ↾  𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹  “  𝐶 ) )  →  ( 𝐹  “  𝐶 )  ≈  𝐶 ) | 
						
							| 6 | 1 5 | sylan2 | ⊢ ( ( 𝐶  ∈  Fin  ∧  ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐶  ⊆  𝐴 ) )  →  ( 𝐹  “  𝐶 )  ≈  𝐶 ) | 
						
							| 7 | 6 | 3impb | ⊢ ( ( 𝐶  ∈  Fin  ∧  𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐶  ⊆  𝐴 )  →  ( 𝐹  “  𝐶 )  ≈  𝐶 ) | 
						
							| 8 | 7 | 3coml | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐶  ⊆  𝐴  ∧  𝐶  ∈  Fin )  →  ( 𝐹  “  𝐶 )  ≈  𝐶 ) |