Metamath Proof Explorer


Theorem f1omptsn

Description: A function mapping to singletons is bijective onto a set of singletons. (Contributed by ML, 16-Jul-2020)

Ref Expression
Hypotheses f1omptsn.f
|- F = ( x e. A |-> { x } )
f1omptsn.r
|- R = { u | E. x e. A u = { x } }
Assertion f1omptsn
|- F : A -1-1-onto-> R

Proof

Step Hyp Ref Expression
1 f1omptsn.f
 |-  F = ( x e. A |-> { x } )
2 f1omptsn.r
 |-  R = { u | E. x e. A u = { x } }
3 sneq
 |-  ( x = a -> { x } = { a } )
4 3 cbvmptv
 |-  ( x e. A |-> { x } ) = ( a e. A |-> { a } )
5 4 eqcomi
 |-  ( a e. A |-> { a } ) = ( x e. A |-> { x } )
6 id
 |-  ( u = z -> u = z )
7 6 3 eqeqan12d
 |-  ( ( u = z /\ x = a ) -> ( u = { x } <-> z = { a } ) )
8 7 cbvrexdva
 |-  ( u = z -> ( E. x e. A u = { x } <-> E. a e. A z = { a } ) )
9 8 cbvabv
 |-  { u | E. x e. A u = { x } } = { z | E. a e. A z = { a } }
10 9 eqcomi
 |-  { z | E. a e. A z = { a } } = { u | E. x e. A u = { x } }
11 5 10 f1omptsnlem
 |-  ( a e. A |-> { a } ) : A -1-1-onto-> { z | E. a e. A z = { a } }
12 2 9 eqtri
 |-  R = { z | E. a e. A z = { a } }
13 f1oeq3
 |-  ( R = { z | E. a e. A z = { a } } -> ( ( a e. A |-> { a } ) : A -1-1-onto-> R <-> ( a e. A |-> { a } ) : A -1-1-onto-> { z | E. a e. A z = { a } } ) )
14 12 13 ax-mp
 |-  ( ( a e. A |-> { a } ) : A -1-1-onto-> R <-> ( a e. A |-> { a } ) : A -1-1-onto-> { z | E. a e. A z = { a } } )
15 11 14 mpbir
 |-  ( a e. A |-> { a } ) : A -1-1-onto-> R
16 1 4 eqtri
 |-  F = ( a e. A |-> { a } )
17 f1oeq1
 |-  ( F = ( a e. A |-> { a } ) -> ( F : A -1-1-onto-> R <-> ( a e. A |-> { a } ) : A -1-1-onto-> R ) )
18 16 17 ax-mp
 |-  ( F : A -1-1-onto-> R <-> ( a e. A |-> { a } ) : A -1-1-onto-> R )
19 15 18 mpbir
 |-  F : A -1-1-onto-> R