| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1omptsn.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) |
| 2 |
|
f1omptsn.r |
⊢ 𝑅 = { 𝑢 ∣ ∃ 𝑥 ∈ 𝐴 𝑢 = { 𝑥 } } |
| 3 |
|
sneq |
⊢ ( 𝑥 = 𝑎 → { 𝑥 } = { 𝑎 } ) |
| 4 |
3
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) = ( 𝑎 ∈ 𝐴 ↦ { 𝑎 } ) |
| 5 |
4
|
eqcomi |
⊢ ( 𝑎 ∈ 𝐴 ↦ { 𝑎 } ) = ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) |
| 6 |
|
id |
⊢ ( 𝑢 = 𝑧 → 𝑢 = 𝑧 ) |
| 7 |
6 3
|
eqeqan12d |
⊢ ( ( 𝑢 = 𝑧 ∧ 𝑥 = 𝑎 ) → ( 𝑢 = { 𝑥 } ↔ 𝑧 = { 𝑎 } ) ) |
| 8 |
7
|
cbvrexdva |
⊢ ( 𝑢 = 𝑧 → ( ∃ 𝑥 ∈ 𝐴 𝑢 = { 𝑥 } ↔ ∃ 𝑎 ∈ 𝐴 𝑧 = { 𝑎 } ) ) |
| 9 |
8
|
cbvabv |
⊢ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐴 𝑢 = { 𝑥 } } = { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = { 𝑎 } } |
| 10 |
9
|
eqcomi |
⊢ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = { 𝑎 } } = { 𝑢 ∣ ∃ 𝑥 ∈ 𝐴 𝑢 = { 𝑥 } } |
| 11 |
5 10
|
f1omptsnlem |
⊢ ( 𝑎 ∈ 𝐴 ↦ { 𝑎 } ) : 𝐴 –1-1-onto→ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = { 𝑎 } } |
| 12 |
2 9
|
eqtri |
⊢ 𝑅 = { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = { 𝑎 } } |
| 13 |
|
f1oeq3 |
⊢ ( 𝑅 = { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = { 𝑎 } } → ( ( 𝑎 ∈ 𝐴 ↦ { 𝑎 } ) : 𝐴 –1-1-onto→ 𝑅 ↔ ( 𝑎 ∈ 𝐴 ↦ { 𝑎 } ) : 𝐴 –1-1-onto→ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = { 𝑎 } } ) ) |
| 14 |
12 13
|
ax-mp |
⊢ ( ( 𝑎 ∈ 𝐴 ↦ { 𝑎 } ) : 𝐴 –1-1-onto→ 𝑅 ↔ ( 𝑎 ∈ 𝐴 ↦ { 𝑎 } ) : 𝐴 –1-1-onto→ { 𝑧 ∣ ∃ 𝑎 ∈ 𝐴 𝑧 = { 𝑎 } } ) |
| 15 |
11 14
|
mpbir |
⊢ ( 𝑎 ∈ 𝐴 ↦ { 𝑎 } ) : 𝐴 –1-1-onto→ 𝑅 |
| 16 |
1 4
|
eqtri |
⊢ 𝐹 = ( 𝑎 ∈ 𝐴 ↦ { 𝑎 } ) |
| 17 |
|
f1oeq1 |
⊢ ( 𝐹 = ( 𝑎 ∈ 𝐴 ↦ { 𝑎 } ) → ( 𝐹 : 𝐴 –1-1-onto→ 𝑅 ↔ ( 𝑎 ∈ 𝐴 ↦ { 𝑎 } ) : 𝐴 –1-1-onto→ 𝑅 ) ) |
| 18 |
16 17
|
ax-mp |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝑅 ↔ ( 𝑎 ∈ 𝐴 ↦ { 𝑎 } ) : 𝐴 –1-1-onto→ 𝑅 ) |
| 19 |
15 18
|
mpbir |
⊢ 𝐹 : 𝐴 –1-1-onto→ 𝑅 |