Metamath Proof Explorer


Theorem f1omptsn

Description: A function mapping to singletons is bijective onto a set of singletons. (Contributed by ML, 16-Jul-2020)

Ref Expression
Hypotheses f1omptsn.f 𝐹 = ( 𝑥𝐴 ↦ { 𝑥 } )
f1omptsn.r 𝑅 = { 𝑢 ∣ ∃ 𝑥𝐴 𝑢 = { 𝑥 } }
Assertion f1omptsn 𝐹 : 𝐴1-1-onto𝑅

Proof

Step Hyp Ref Expression
1 f1omptsn.f 𝐹 = ( 𝑥𝐴 ↦ { 𝑥 } )
2 f1omptsn.r 𝑅 = { 𝑢 ∣ ∃ 𝑥𝐴 𝑢 = { 𝑥 } }
3 sneq ( 𝑥 = 𝑎 → { 𝑥 } = { 𝑎 } )
4 3 cbvmptv ( 𝑥𝐴 ↦ { 𝑥 } ) = ( 𝑎𝐴 ↦ { 𝑎 } )
5 4 eqcomi ( 𝑎𝐴 ↦ { 𝑎 } ) = ( 𝑥𝐴 ↦ { 𝑥 } )
6 id ( 𝑢 = 𝑧𝑢 = 𝑧 )
7 6 3 eqeqan12d ( ( 𝑢 = 𝑧𝑥 = 𝑎 ) → ( 𝑢 = { 𝑥 } ↔ 𝑧 = { 𝑎 } ) )
8 7 cbvrexdva ( 𝑢 = 𝑧 → ( ∃ 𝑥𝐴 𝑢 = { 𝑥 } ↔ ∃ 𝑎𝐴 𝑧 = { 𝑎 } ) )
9 8 cbvabv { 𝑢 ∣ ∃ 𝑥𝐴 𝑢 = { 𝑥 } } = { 𝑧 ∣ ∃ 𝑎𝐴 𝑧 = { 𝑎 } }
10 9 eqcomi { 𝑧 ∣ ∃ 𝑎𝐴 𝑧 = { 𝑎 } } = { 𝑢 ∣ ∃ 𝑥𝐴 𝑢 = { 𝑥 } }
11 5 10 f1omptsnlem ( 𝑎𝐴 ↦ { 𝑎 } ) : 𝐴1-1-onto→ { 𝑧 ∣ ∃ 𝑎𝐴 𝑧 = { 𝑎 } }
12 2 9 eqtri 𝑅 = { 𝑧 ∣ ∃ 𝑎𝐴 𝑧 = { 𝑎 } }
13 f1oeq3 ( 𝑅 = { 𝑧 ∣ ∃ 𝑎𝐴 𝑧 = { 𝑎 } } → ( ( 𝑎𝐴 ↦ { 𝑎 } ) : 𝐴1-1-onto𝑅 ↔ ( 𝑎𝐴 ↦ { 𝑎 } ) : 𝐴1-1-onto→ { 𝑧 ∣ ∃ 𝑎𝐴 𝑧 = { 𝑎 } } ) )
14 12 13 ax-mp ( ( 𝑎𝐴 ↦ { 𝑎 } ) : 𝐴1-1-onto𝑅 ↔ ( 𝑎𝐴 ↦ { 𝑎 } ) : 𝐴1-1-onto→ { 𝑧 ∣ ∃ 𝑎𝐴 𝑧 = { 𝑎 } } )
15 11 14 mpbir ( 𝑎𝐴 ↦ { 𝑎 } ) : 𝐴1-1-onto𝑅
16 1 4 eqtri 𝐹 = ( 𝑎𝐴 ↦ { 𝑎 } )
17 f1oeq1 ( 𝐹 = ( 𝑎𝐴 ↦ { 𝑎 } ) → ( 𝐹 : 𝐴1-1-onto𝑅 ↔ ( 𝑎𝐴 ↦ { 𝑎 } ) : 𝐴1-1-onto𝑅 ) )
18 16 17 ax-mp ( 𝐹 : 𝐴1-1-onto𝑅 ↔ ( 𝑎𝐴 ↦ { 𝑎 } ) : 𝐴1-1-onto𝑅 )
19 15 18 mpbir 𝐹 : 𝐴1-1-onto𝑅