Step |
Hyp |
Ref |
Expression |
1 |
|
mptsnun.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) |
2 |
|
mptsnun.r |
⊢ 𝑅 = { 𝑢 ∣ ∃ 𝑥 ∈ 𝐴 𝑢 = { 𝑥 } } |
3 |
|
df-ima |
⊢ ( 𝐹 “ 𝐵 ) = ran ( 𝐹 ↾ 𝐵 ) |
4 |
1
|
reseq1i |
⊢ ( 𝐹 ↾ 𝐵 ) = ( ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ↾ 𝐵 ) |
5 |
|
resmpt |
⊢ ( 𝐵 ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ↾ 𝐵 ) = ( 𝑥 ∈ 𝐵 ↦ { 𝑥 } ) ) |
6 |
4 5
|
syl5eq |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐹 ↾ 𝐵 ) = ( 𝑥 ∈ 𝐵 ↦ { 𝑥 } ) ) |
7 |
6
|
rneqd |
⊢ ( 𝐵 ⊆ 𝐴 → ran ( 𝐹 ↾ 𝐵 ) = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑥 } ) ) |
8 |
|
rnmptsn |
⊢ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑥 } ) = { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } |
9 |
7 8
|
eqtrdi |
⊢ ( 𝐵 ⊆ 𝐴 → ran ( 𝐹 ↾ 𝐵 ) = { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) |
10 |
3 9
|
syl5eq |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐹 “ 𝐵 ) = { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) |
11 |
10
|
unieqd |
⊢ ( 𝐵 ⊆ 𝐴 → ∪ ( 𝐹 “ 𝐵 ) = ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) |
12 |
11
|
eleq2d |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝑥 ∈ ∪ ( 𝐹 “ 𝐵 ) ↔ 𝑥 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) |
13 |
|
eleq1w |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) |
14 |
|
eluniab |
⊢ ( 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ↔ ∃ 𝑢 ( 𝑧 ∈ 𝑢 ∧ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } ) ) |
15 |
|
ancom |
⊢ ( ( 𝑧 ∈ 𝑢 ∧ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } ) ↔ ( ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } ∧ 𝑧 ∈ 𝑢 ) ) |
16 |
|
r19.41v |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑢 = { 𝑥 } ∧ 𝑧 ∈ 𝑢 ) ↔ ( ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } ∧ 𝑧 ∈ 𝑢 ) ) |
17 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑢 = { 𝑥 } ∧ 𝑧 ∈ 𝑢 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑢 = { 𝑥 } ∧ 𝑧 ∈ 𝑢 ) ) ) |
18 |
15 16 17
|
3bitr2i |
⊢ ( ( 𝑧 ∈ 𝑢 ∧ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑢 = { 𝑥 } ∧ 𝑧 ∈ 𝑢 ) ) ) |
19 |
|
eleq2 |
⊢ ( 𝑢 = { 𝑥 } → ( 𝑧 ∈ 𝑢 ↔ 𝑧 ∈ { 𝑥 } ) ) |
20 |
19
|
anbi2d |
⊢ ( 𝑢 = { 𝑥 } → ( ( 𝑢 = { 𝑥 } ∧ 𝑧 ∈ 𝑢 ) ↔ ( 𝑢 = { 𝑥 } ∧ 𝑧 ∈ { 𝑥 } ) ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝑢 = { 𝑥 } ∧ 𝑧 ∈ 𝑢 ) → ( ( 𝑢 = { 𝑥 } ∧ 𝑧 ∈ 𝑢 ) ↔ ( 𝑢 = { 𝑥 } ∧ 𝑧 ∈ { 𝑥 } ) ) ) |
22 |
21
|
ibi |
⊢ ( ( 𝑢 = { 𝑥 } ∧ 𝑧 ∈ 𝑢 ) → ( 𝑢 = { 𝑥 } ∧ 𝑧 ∈ { 𝑥 } ) ) |
23 |
22
|
anim2i |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( 𝑢 = { 𝑥 } ∧ 𝑧 ∈ 𝑢 ) ) → ( 𝑥 ∈ 𝐵 ∧ ( 𝑢 = { 𝑥 } ∧ 𝑧 ∈ { 𝑥 } ) ) ) |
24 |
23
|
eximi |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑢 = { 𝑥 } ∧ 𝑧 ∈ 𝑢 ) ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑢 = { 𝑥 } ∧ 𝑧 ∈ { 𝑥 } ) ) ) |
25 |
18 24
|
sylbi |
⊢ ( ( 𝑧 ∈ 𝑢 ∧ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑢 = { 𝑥 } ∧ 𝑧 ∈ { 𝑥 } ) ) ) |
26 |
|
an12 |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( 𝑢 = { 𝑥 } ∧ 𝑧 ∈ { 𝑥 } ) ) ↔ ( 𝑢 = { 𝑥 } ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ { 𝑥 } ) ) ) |
27 |
26
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑢 = { 𝑥 } ∧ 𝑧 ∈ { 𝑥 } ) ) ↔ ∃ 𝑥 ( 𝑢 = { 𝑥 } ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ { 𝑥 } ) ) ) |
28 |
|
exsimpr |
⊢ ( ∃ 𝑥 ( 𝑢 = { 𝑥 } ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ { 𝑥 } ) ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ { 𝑥 } ) ) |
29 |
27 28
|
sylbi |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑢 = { 𝑥 } ∧ 𝑧 ∈ { 𝑥 } ) ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ { 𝑥 } ) ) |
30 |
25 29
|
syl |
⊢ ( ( 𝑧 ∈ 𝑢 ∧ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ { 𝑥 } ) ) |
31 |
30
|
exlimiv |
⊢ ( ∃ 𝑢 ( 𝑧 ∈ 𝑢 ∧ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ { 𝑥 } ) ) |
32 |
14 31
|
sylbi |
⊢ ( 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ { 𝑥 } ) ) |
33 |
|
velsn |
⊢ ( 𝑧 ∈ { 𝑥 } ↔ 𝑧 = 𝑥 ) |
34 |
33
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ { 𝑥 } ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑧 = 𝑥 ) ) |
35 |
34
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ { 𝑥 } ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑧 = 𝑥 ) ) |
36 |
32 35
|
sylib |
⊢ ( 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑧 = 𝑥 ) ) |
37 |
13
|
biimparc |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑧 = 𝑥 ) → 𝑧 ∈ 𝐵 ) |
38 |
37
|
exlimiv |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑧 = 𝑥 ) → 𝑧 ∈ 𝐵 ) |
39 |
36 38
|
syl |
⊢ ( 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } → 𝑧 ∈ 𝐵 ) |
40 |
13 39
|
vtoclga |
⊢ ( 𝑥 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } → 𝑥 ∈ 𝐵 ) |
41 |
|
equid |
⊢ 𝑥 = 𝑥 |
42 |
|
eqid |
⊢ { 𝑥 } = { 𝑥 } |
43 |
|
snex |
⊢ { 𝑥 } ∈ V |
44 |
|
sbcg |
⊢ ( { 𝑥 } ∈ V → ( [ { 𝑥 } / 𝑢 ] 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) |
45 |
43 44
|
ax-mp |
⊢ ( [ { 𝑥 } / 𝑢 ] 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) |
46 |
|
eqsbc1 |
⊢ ( { 𝑥 } ∈ V → ( [ { 𝑥 } / 𝑢 ] 𝑢 = { 𝑥 } ↔ { 𝑥 } = { 𝑥 } ) ) |
47 |
43 46
|
ax-mp |
⊢ ( [ { 𝑥 } / 𝑢 ] 𝑢 = { 𝑥 } ↔ { 𝑥 } = { 𝑥 } ) |
48 |
19
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑢 = { 𝑥 } ) → ( 𝑧 ∈ 𝑢 ↔ 𝑧 ∈ { 𝑥 } ) ) |
49 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑢 = { 𝑥 } ) ) |
50 |
14
|
biimpri |
⊢ ( ∃ 𝑢 ( 𝑧 ∈ 𝑢 ∧ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } ) → 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) |
51 |
50
|
19.23bi |
⊢ ( ( 𝑧 ∈ 𝑢 ∧ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } ) → 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) |
52 |
51
|
expcom |
⊢ ( ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } → ( 𝑧 ∈ 𝑢 → 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) |
53 |
49 52
|
sylbir |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑢 = { 𝑥 } ) → ( 𝑧 ∈ 𝑢 → 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) |
54 |
53
|
19.23bi |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑢 = { 𝑥 } ) → ( 𝑧 ∈ 𝑢 → 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) |
55 |
48 54
|
sylbird |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑢 = { 𝑥 } ) → ( 𝑧 ∈ { 𝑥 } → 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) |
56 |
55
|
sbcth |
⊢ ( { 𝑥 } ∈ V → [ { 𝑥 } / 𝑢 ] ( ( 𝑥 ∈ 𝐵 ∧ 𝑢 = { 𝑥 } ) → ( 𝑧 ∈ { 𝑥 } → 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) ) |
57 |
43 56
|
ax-mp |
⊢ [ { 𝑥 } / 𝑢 ] ( ( 𝑥 ∈ 𝐵 ∧ 𝑢 = { 𝑥 } ) → ( 𝑧 ∈ { 𝑥 } → 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) |
58 |
|
sbcimg |
⊢ ( { 𝑥 } ∈ V → ( [ { 𝑥 } / 𝑢 ] ( ( 𝑥 ∈ 𝐵 ∧ 𝑢 = { 𝑥 } ) → ( 𝑧 ∈ { 𝑥 } → 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) ↔ ( [ { 𝑥 } / 𝑢 ] ( 𝑥 ∈ 𝐵 ∧ 𝑢 = { 𝑥 } ) → [ { 𝑥 } / 𝑢 ] ( 𝑧 ∈ { 𝑥 } → 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) ) ) |
59 |
43 58
|
ax-mp |
⊢ ( [ { 𝑥 } / 𝑢 ] ( ( 𝑥 ∈ 𝐵 ∧ 𝑢 = { 𝑥 } ) → ( 𝑧 ∈ { 𝑥 } → 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) ↔ ( [ { 𝑥 } / 𝑢 ] ( 𝑥 ∈ 𝐵 ∧ 𝑢 = { 𝑥 } ) → [ { 𝑥 } / 𝑢 ] ( 𝑧 ∈ { 𝑥 } → 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) ) |
60 |
57 59
|
mpbi |
⊢ ( [ { 𝑥 } / 𝑢 ] ( 𝑥 ∈ 𝐵 ∧ 𝑢 = { 𝑥 } ) → [ { 𝑥 } / 𝑢 ] ( 𝑧 ∈ { 𝑥 } → 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) |
61 |
|
sbcan |
⊢ ( [ { 𝑥 } / 𝑢 ] ( 𝑥 ∈ 𝐵 ∧ 𝑢 = { 𝑥 } ) ↔ ( [ { 𝑥 } / 𝑢 ] 𝑥 ∈ 𝐵 ∧ [ { 𝑥 } / 𝑢 ] 𝑢 = { 𝑥 } ) ) |
62 |
|
nfv |
⊢ Ⅎ 𝑢 𝑧 ∈ { 𝑥 } |
63 |
|
nfab1 |
⊢ Ⅎ 𝑢 { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } |
64 |
63
|
nfuni |
⊢ Ⅎ 𝑢 ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } |
65 |
64
|
nfcri |
⊢ Ⅎ 𝑢 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } |
66 |
62 65
|
nfim |
⊢ Ⅎ 𝑢 ( 𝑧 ∈ { 𝑥 } → 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) |
67 |
43 66
|
sbcgfi |
⊢ ( [ { 𝑥 } / 𝑢 ] ( 𝑧 ∈ { 𝑥 } → 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ↔ ( 𝑧 ∈ { 𝑥 } → 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) |
68 |
60 61 67
|
3imtr3i |
⊢ ( ( [ { 𝑥 } / 𝑢 ] 𝑥 ∈ 𝐵 ∧ [ { 𝑥 } / 𝑢 ] 𝑢 = { 𝑥 } ) → ( 𝑧 ∈ { 𝑥 } → 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) |
69 |
45 47 68
|
syl2anbr |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ { 𝑥 } = { 𝑥 } ) → ( 𝑧 ∈ { 𝑥 } → 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) |
70 |
42 69
|
mpan2 |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑧 ∈ { 𝑥 } → 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) |
71 |
33 70
|
syl5bir |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑧 = 𝑥 → 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) |
72 |
|
eleq1w |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ↔ 𝑥 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) |
73 |
71 72
|
mpbidi |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑧 = 𝑥 → 𝑥 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) |
74 |
73
|
com12 |
⊢ ( 𝑧 = 𝑥 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) |
75 |
74
|
sbimi |
⊢ ( [ 𝑥 / 𝑧 ] 𝑧 = 𝑥 → [ 𝑥 / 𝑧 ] ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) |
76 |
|
equsb3 |
⊢ ( [ 𝑥 / 𝑧 ] 𝑧 = 𝑥 ↔ 𝑥 = 𝑥 ) |
77 |
|
sbv |
⊢ ( [ 𝑥 / 𝑧 ] ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ↔ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) |
78 |
75 76 77
|
3imtr3i |
⊢ ( 𝑥 = 𝑥 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) ) |
79 |
41 78
|
ax-mp |
⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ) |
80 |
40 79
|
impbii |
⊢ ( 𝑥 ∈ ∪ { 𝑢 ∣ ∃ 𝑥 ∈ 𝐵 𝑢 = { 𝑥 } } ↔ 𝑥 ∈ 𝐵 ) |
81 |
12 80
|
bitrdi |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝑥 ∈ ∪ ( 𝐹 “ 𝐵 ) ↔ 𝑥 ∈ 𝐵 ) ) |
82 |
81
|
eqrdv |
⊢ ( 𝐵 ⊆ 𝐴 → ∪ ( 𝐹 “ 𝐵 ) = 𝐵 ) |
83 |
82
|
eqcomd |
⊢ ( 𝐵 ⊆ 𝐴 → 𝐵 = ∪ ( 𝐹 “ 𝐵 ) ) |