Metamath Proof Explorer


Theorem mptsnunlem

Description: This is the core of the proof of mptsnun , but to avoid the distinct variables on the definitions, we split this proof into two. (Contributed by ML, 16-Jul-2020)

Ref Expression
Hypotheses mptsnun.f F = x A x
mptsnun.r R = u | x A u = x
Assertion mptsnunlem B A B = F B

Proof

Step Hyp Ref Expression
1 mptsnun.f F = x A x
2 mptsnun.r R = u | x A u = x
3 df-ima F B = ran F B
4 1 reseq1i F B = x A x B
5 resmpt B A x A x B = x B x
6 4 5 syl5eq B A F B = x B x
7 6 rneqd B A ran F B = ran x B x
8 rnmptsn ran x B x = u | x B u = x
9 7 8 eqtrdi B A ran F B = u | x B u = x
10 3 9 syl5eq B A F B = u | x B u = x
11 10 unieqd B A F B = u | x B u = x
12 11 eleq2d B A x F B x u | x B u = x
13 eleq1w z = x z B x B
14 eluniab z u | x B u = x u z u x B u = x
15 ancom z u x B u = x x B u = x z u
16 r19.41v x B u = x z u x B u = x z u
17 df-rex x B u = x z u x x B u = x z u
18 15 16 17 3bitr2i z u x B u = x x x B u = x z u
19 eleq2 u = x z u z x
20 19 anbi2d u = x u = x z u u = x z x
21 20 adantr u = x z u u = x z u u = x z x
22 21 ibi u = x z u u = x z x
23 22 anim2i x B u = x z u x B u = x z x
24 23 eximi x x B u = x z u x x B u = x z x
25 18 24 sylbi z u x B u = x x x B u = x z x
26 an12 x B u = x z x u = x x B z x
27 26 exbii x x B u = x z x x u = x x B z x
28 exsimpr x u = x x B z x x x B z x
29 27 28 sylbi x x B u = x z x x x B z x
30 25 29 syl z u x B u = x x x B z x
31 30 exlimiv u z u x B u = x x x B z x
32 14 31 sylbi z u | x B u = x x x B z x
33 velsn z x z = x
34 33 anbi2i x B z x x B z = x
35 34 exbii x x B z x x x B z = x
36 32 35 sylib z u | x B u = x x x B z = x
37 13 biimparc x B z = x z B
38 37 exlimiv x x B z = x z B
39 36 38 syl z u | x B u = x z B
40 13 39 vtoclga x u | x B u = x x B
41 equid x = x
42 eqid x = x
43 snex x V
44 sbcg x V [˙ x / u]˙ x B x B
45 43 44 ax-mp [˙ x / u]˙ x B x B
46 eqsbc1 x V [˙ x / u]˙ u = x x = x
47 43 46 ax-mp [˙ x / u]˙ u = x x = x
48 19 adantl x B u = x z u z x
49 df-rex x B u = x x x B u = x
50 14 biimpri u z u x B u = x z u | x B u = x
51 50 19.23bi z u x B u = x z u | x B u = x
52 51 expcom x B u = x z u z u | x B u = x
53 49 52 sylbir x x B u = x z u z u | x B u = x
54 53 19.23bi x B u = x z u z u | x B u = x
55 48 54 sylbird x B u = x z x z u | x B u = x
56 55 sbcth x V [˙ x / u]˙ x B u = x z x z u | x B u = x
57 43 56 ax-mp [˙ x / u]˙ x B u = x z x z u | x B u = x
58 sbcimg x V [˙ x / u]˙ x B u = x z x z u | x B u = x [˙ x / u]˙ x B u = x [˙ x / u]˙ z x z u | x B u = x
59 43 58 ax-mp [˙ x / u]˙ x B u = x z x z u | x B u = x [˙ x / u]˙ x B u = x [˙ x / u]˙ z x z u | x B u = x
60 57 59 mpbi [˙ x / u]˙ x B u = x [˙ x / u]˙ z x z u | x B u = x
61 sbcan [˙ x / u]˙ x B u = x [˙ x / u]˙ x B [˙ x / u]˙ u = x
62 nfv u z x
63 nfab1 _ u u | x B u = x
64 63 nfuni _ u u | x B u = x
65 64 nfcri u z u | x B u = x
66 62 65 nfim u z x z u | x B u = x
67 43 66 sbcgfi [˙ x / u]˙ z x z u | x B u = x z x z u | x B u = x
68 60 61 67 3imtr3i [˙ x / u]˙ x B [˙ x / u]˙ u = x z x z u | x B u = x
69 45 47 68 syl2anbr x B x = x z x z u | x B u = x
70 42 69 mpan2 x B z x z u | x B u = x
71 33 70 syl5bir x B z = x z u | x B u = x
72 eleq1w z = x z u | x B u = x x u | x B u = x
73 71 72 mpbidi x B z = x x u | x B u = x
74 73 com12 z = x x B x u | x B u = x
75 74 sbimi x z z = x x z x B x u | x B u = x
76 equsb3 x z z = x x = x
77 sbv x z x B x u | x B u = x x B x u | x B u = x
78 75 76 77 3imtr3i x = x x B x u | x B u = x
79 41 78 ax-mp x B x u | x B u = x
80 40 79 impbii x u | x B u = x x B
81 12 80 bitrdi B A x F B x B
82 81 eqrdv B A F B = B
83 82 eqcomd B A B = F B