| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mptsnun.f |
|
| 2 |
|
mptsnun.r |
|
| 3 |
|
df-ima |
|
| 4 |
1
|
reseq1i |
|
| 5 |
|
resmpt |
|
| 6 |
4 5
|
eqtrid |
|
| 7 |
6
|
rneqd |
|
| 8 |
|
rnmptsn |
|
| 9 |
7 8
|
eqtrdi |
|
| 10 |
3 9
|
eqtrid |
|
| 11 |
10
|
unieqd |
|
| 12 |
11
|
eleq2d |
|
| 13 |
|
eleq1w |
|
| 14 |
|
eluniab |
|
| 15 |
|
ancom |
|
| 16 |
|
r19.41v |
|
| 17 |
|
df-rex |
|
| 18 |
15 16 17
|
3bitr2i |
|
| 19 |
|
eleq2 |
|
| 20 |
19
|
anbi2d |
|
| 21 |
20
|
adantr |
|
| 22 |
21
|
ibi |
|
| 23 |
22
|
anim2i |
|
| 24 |
23
|
eximi |
|
| 25 |
18 24
|
sylbi |
|
| 26 |
|
an12 |
|
| 27 |
26
|
exbii |
|
| 28 |
|
exsimpr |
|
| 29 |
27 28
|
sylbi |
|
| 30 |
25 29
|
syl |
|
| 31 |
30
|
exlimiv |
|
| 32 |
14 31
|
sylbi |
|
| 33 |
|
velsn |
|
| 34 |
33
|
anbi2i |
|
| 35 |
34
|
exbii |
|
| 36 |
32 35
|
sylib |
|
| 37 |
13
|
biimparc |
|
| 38 |
37
|
exlimiv |
|
| 39 |
36 38
|
syl |
|
| 40 |
13 39
|
vtoclga |
|
| 41 |
|
equid |
|
| 42 |
|
eqid |
|
| 43 |
|
vsnex |
|
| 44 |
|
sbcg |
|
| 45 |
43 44
|
ax-mp |
|
| 46 |
|
eqsbc1 |
|
| 47 |
43 46
|
ax-mp |
|
| 48 |
19
|
adantl |
|
| 49 |
|
df-rex |
|
| 50 |
14
|
biimpri |
|
| 51 |
50
|
19.23bi |
|
| 52 |
51
|
expcom |
|
| 53 |
49 52
|
sylbir |
|
| 54 |
53
|
19.23bi |
|
| 55 |
48 54
|
sylbird |
|
| 56 |
55
|
sbcth |
|
| 57 |
43 56
|
ax-mp |
|
| 58 |
|
sbcimg |
|
| 59 |
43 58
|
ax-mp |
|
| 60 |
57 59
|
mpbi |
|
| 61 |
|
sbcan |
|
| 62 |
|
nfv |
|
| 63 |
|
nfab1 |
|
| 64 |
63
|
nfuni |
|
| 65 |
64
|
nfcri |
|
| 66 |
62 65
|
nfim |
|
| 67 |
43 66
|
sbcgfi |
|
| 68 |
60 61 67
|
3imtr3i |
|
| 69 |
45 47 68
|
syl2anbr |
|
| 70 |
42 69
|
mpan2 |
|
| 71 |
33 70
|
biimtrrid |
|
| 72 |
|
eleq1w |
|
| 73 |
71 72
|
mpbidi |
|
| 74 |
73
|
com12 |
|
| 75 |
74
|
sbimi |
|
| 76 |
|
equsb3 |
|
| 77 |
|
sbv |
|
| 78 |
75 76 77
|
3imtr3i |
|
| 79 |
41 78
|
ax-mp |
|
| 80 |
40 79
|
impbii |
|
| 81 |
12 80
|
bitrdi |
|
| 82 |
81
|
eqrdv |
|
| 83 |
82
|
eqcomd |
|