Step |
Hyp |
Ref |
Expression |
1 |
|
f1otrkg.p |
|- P = ( Base ` G ) |
2 |
|
f1otrkg.d |
|- D = ( dist ` G ) |
3 |
|
f1otrkg.i |
|- I = ( Itv ` G ) |
4 |
|
f1otrkg.b |
|- B = ( Base ` H ) |
5 |
|
f1otrkg.e |
|- E = ( dist ` H ) |
6 |
|
f1otrkg.j |
|- J = ( Itv ` H ) |
7 |
|
f1otrkg.f |
|- ( ph -> F : B -1-1-onto-> P ) |
8 |
|
f1otrkg.1 |
|- ( ( ph /\ ( e e. B /\ f e. B ) ) -> ( e E f ) = ( ( F ` e ) D ( F ` f ) ) ) |
9 |
|
f1otrkg.2 |
|- ( ( ph /\ ( e e. B /\ f e. B /\ g e. B ) ) -> ( g e. ( e J f ) <-> ( F ` g ) e. ( ( F ` e ) I ( F ` f ) ) ) ) |
10 |
|
f1otrgitv.x |
|- ( ph -> X e. B ) |
11 |
|
f1otrgitv.y |
|- ( ph -> Y e. B ) |
12 |
8
|
ralrimivva |
|- ( ph -> A. e e. B A. f e. B ( e E f ) = ( ( F ` e ) D ( F ` f ) ) ) |
13 |
|
oveq1 |
|- ( e = X -> ( e E f ) = ( X E f ) ) |
14 |
|
fveq2 |
|- ( e = X -> ( F ` e ) = ( F ` X ) ) |
15 |
14
|
oveq1d |
|- ( e = X -> ( ( F ` e ) D ( F ` f ) ) = ( ( F ` X ) D ( F ` f ) ) ) |
16 |
13 15
|
eqeq12d |
|- ( e = X -> ( ( e E f ) = ( ( F ` e ) D ( F ` f ) ) <-> ( X E f ) = ( ( F ` X ) D ( F ` f ) ) ) ) |
17 |
|
oveq2 |
|- ( f = Y -> ( X E f ) = ( X E Y ) ) |
18 |
|
fveq2 |
|- ( f = Y -> ( F ` f ) = ( F ` Y ) ) |
19 |
18
|
oveq2d |
|- ( f = Y -> ( ( F ` X ) D ( F ` f ) ) = ( ( F ` X ) D ( F ` Y ) ) ) |
20 |
17 19
|
eqeq12d |
|- ( f = Y -> ( ( X E f ) = ( ( F ` X ) D ( F ` f ) ) <-> ( X E Y ) = ( ( F ` X ) D ( F ` Y ) ) ) ) |
21 |
16 20
|
rspc2v |
|- ( ( X e. B /\ Y e. B ) -> ( A. e e. B A. f e. B ( e E f ) = ( ( F ` e ) D ( F ` f ) ) -> ( X E Y ) = ( ( F ` X ) D ( F ` Y ) ) ) ) |
22 |
10 11 21
|
syl2anc |
|- ( ph -> ( A. e e. B A. f e. B ( e E f ) = ( ( F ` e ) D ( F ` f ) ) -> ( X E Y ) = ( ( F ` X ) D ( F ` Y ) ) ) ) |
23 |
12 22
|
mpd |
|- ( ph -> ( X E Y ) = ( ( F ` X ) D ( F ` Y ) ) ) |