Metamath Proof Explorer


Theorem f1otrgds

Description: Convenient lemma for f1otrg . (Contributed by Thierry Arnoux, 19-Mar-2019)

Ref Expression
Hypotheses f1otrkg.p
|- P = ( Base ` G )
f1otrkg.d
|- D = ( dist ` G )
f1otrkg.i
|- I = ( Itv ` G )
f1otrkg.b
|- B = ( Base ` H )
f1otrkg.e
|- E = ( dist ` H )
f1otrkg.j
|- J = ( Itv ` H )
f1otrkg.f
|- ( ph -> F : B -1-1-onto-> P )
f1otrkg.1
|- ( ( ph /\ ( e e. B /\ f e. B ) ) -> ( e E f ) = ( ( F ` e ) D ( F ` f ) ) )
f1otrkg.2
|- ( ( ph /\ ( e e. B /\ f e. B /\ g e. B ) ) -> ( g e. ( e J f ) <-> ( F ` g ) e. ( ( F ` e ) I ( F ` f ) ) ) )
f1otrgitv.x
|- ( ph -> X e. B )
f1otrgitv.y
|- ( ph -> Y e. B )
Assertion f1otrgds
|- ( ph -> ( X E Y ) = ( ( F ` X ) D ( F ` Y ) ) )

Proof

Step Hyp Ref Expression
1 f1otrkg.p
 |-  P = ( Base ` G )
2 f1otrkg.d
 |-  D = ( dist ` G )
3 f1otrkg.i
 |-  I = ( Itv ` G )
4 f1otrkg.b
 |-  B = ( Base ` H )
5 f1otrkg.e
 |-  E = ( dist ` H )
6 f1otrkg.j
 |-  J = ( Itv ` H )
7 f1otrkg.f
 |-  ( ph -> F : B -1-1-onto-> P )
8 f1otrkg.1
 |-  ( ( ph /\ ( e e. B /\ f e. B ) ) -> ( e E f ) = ( ( F ` e ) D ( F ` f ) ) )
9 f1otrkg.2
 |-  ( ( ph /\ ( e e. B /\ f e. B /\ g e. B ) ) -> ( g e. ( e J f ) <-> ( F ` g ) e. ( ( F ` e ) I ( F ` f ) ) ) )
10 f1otrgitv.x
 |-  ( ph -> X e. B )
11 f1otrgitv.y
 |-  ( ph -> Y e. B )
12 8 ralrimivva
 |-  ( ph -> A. e e. B A. f e. B ( e E f ) = ( ( F ` e ) D ( F ` f ) ) )
13 oveq1
 |-  ( e = X -> ( e E f ) = ( X E f ) )
14 fveq2
 |-  ( e = X -> ( F ` e ) = ( F ` X ) )
15 14 oveq1d
 |-  ( e = X -> ( ( F ` e ) D ( F ` f ) ) = ( ( F ` X ) D ( F ` f ) ) )
16 13 15 eqeq12d
 |-  ( e = X -> ( ( e E f ) = ( ( F ` e ) D ( F ` f ) ) <-> ( X E f ) = ( ( F ` X ) D ( F ` f ) ) ) )
17 oveq2
 |-  ( f = Y -> ( X E f ) = ( X E Y ) )
18 fveq2
 |-  ( f = Y -> ( F ` f ) = ( F ` Y ) )
19 18 oveq2d
 |-  ( f = Y -> ( ( F ` X ) D ( F ` f ) ) = ( ( F ` X ) D ( F ` Y ) ) )
20 17 19 eqeq12d
 |-  ( f = Y -> ( ( X E f ) = ( ( F ` X ) D ( F ` f ) ) <-> ( X E Y ) = ( ( F ` X ) D ( F ` Y ) ) ) )
21 16 20 rspc2v
 |-  ( ( X e. B /\ Y e. B ) -> ( A. e e. B A. f e. B ( e E f ) = ( ( F ` e ) D ( F ` f ) ) -> ( X E Y ) = ( ( F ` X ) D ( F ` Y ) ) ) )
22 10 11 21 syl2anc
 |-  ( ph -> ( A. e e. B A. f e. B ( e E f ) = ( ( F ` e ) D ( F ` f ) ) -> ( X E Y ) = ( ( F ` X ) D ( F ` Y ) ) ) )
23 12 22 mpd
 |-  ( ph -> ( X E Y ) = ( ( F ` X ) D ( F ` Y ) ) )