| Step | Hyp | Ref | Expression | 
						
							| 1 |  | faovcl.1 |  |-  F : ( R X. S ) --> C | 
						
							| 2 |  | ffnaov |  |-  ( F : ( R X. S ) --> C <-> ( F Fn ( R X. S ) /\ A. x e. R A. y e. S (( x F y )) e. C ) ) | 
						
							| 3 | 2 | simprbi |  |-  ( F : ( R X. S ) --> C -> A. x e. R A. y e. S (( x F y )) e. C ) | 
						
							| 4 | 1 3 | ax-mp |  |-  A. x e. R A. y e. S (( x F y )) e. C | 
						
							| 5 |  | eqidd |  |-  ( x = A -> F = F ) | 
						
							| 6 |  | id |  |-  ( x = A -> x = A ) | 
						
							| 7 |  | eqidd |  |-  ( x = A -> y = y ) | 
						
							| 8 | 5 6 7 | aoveq123d |  |-  ( x = A -> (( x F y )) = (( A F y )) ) | 
						
							| 9 | 8 | eleq1d |  |-  ( x = A -> ( (( x F y )) e. C <-> (( A F y )) e. C ) ) | 
						
							| 10 |  | eqidd |  |-  ( y = B -> F = F ) | 
						
							| 11 |  | eqidd |  |-  ( y = B -> A = A ) | 
						
							| 12 |  | id |  |-  ( y = B -> y = B ) | 
						
							| 13 | 10 11 12 | aoveq123d |  |-  ( y = B -> (( A F y )) = (( A F B )) ) | 
						
							| 14 | 13 | eleq1d |  |-  ( y = B -> ( (( A F y )) e. C <-> (( A F B )) e. C ) ) | 
						
							| 15 | 9 14 | rspc2v |  |-  ( ( A e. R /\ B e. S ) -> ( A. x e. R A. y e. S (( x F y )) e. C -> (( A F B )) e. C ) ) | 
						
							| 16 | 4 15 | mpi |  |-  ( ( A e. R /\ B e. S ) -> (( A F B )) e. C ) |