Metamath Proof Explorer


Theorem faovcl

Description: Closure law for an operation, analogous to fovcl . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypothesis faovcl.1
|- F : ( R X. S ) --> C
Assertion faovcl
|- ( ( A e. R /\ B e. S ) -> (( A F B )) e. C )

Proof

Step Hyp Ref Expression
1 faovcl.1
 |-  F : ( R X. S ) --> C
2 ffnaov
 |-  ( F : ( R X. S ) --> C <-> ( F Fn ( R X. S ) /\ A. x e. R A. y e. S (( x F y )) e. C ) )
3 2 simprbi
 |-  ( F : ( R X. S ) --> C -> A. x e. R A. y e. S (( x F y )) e. C )
4 1 3 ax-mp
 |-  A. x e. R A. y e. S (( x F y )) e. C
5 eqidd
 |-  ( x = A -> F = F )
6 id
 |-  ( x = A -> x = A )
7 eqidd
 |-  ( x = A -> y = y )
8 5 6 7 aoveq123d
 |-  ( x = A -> (( x F y )) = (( A F y )) )
9 8 eleq1d
 |-  ( x = A -> ( (( x F y )) e. C <-> (( A F y )) e. C ) )
10 eqidd
 |-  ( y = B -> F = F )
11 eqidd
 |-  ( y = B -> A = A )
12 id
 |-  ( y = B -> y = B )
13 10 11 12 aoveq123d
 |-  ( y = B -> (( A F y )) = (( A F B )) )
14 13 eleq1d
 |-  ( y = B -> ( (( A F y )) e. C <-> (( A F B )) e. C ) )
15 9 14 rspc2v
 |-  ( ( A e. R /\ B e. S ) -> ( A. x e. R A. y e. S (( x F y )) e. C -> (( A F B )) e. C ) )
16 4 15 mpi
 |-  ( ( A e. R /\ B e. S ) -> (( A F B )) e. C )