Step |
Hyp |
Ref |
Expression |
1 |
|
faovcl.1 |
|- F : ( R X. S ) --> C |
2 |
|
ffnaov |
|- ( F : ( R X. S ) --> C <-> ( F Fn ( R X. S ) /\ A. x e. R A. y e. S (( x F y )) e. C ) ) |
3 |
2
|
simprbi |
|- ( F : ( R X. S ) --> C -> A. x e. R A. y e. S (( x F y )) e. C ) |
4 |
1 3
|
ax-mp |
|- A. x e. R A. y e. S (( x F y )) e. C |
5 |
|
eqidd |
|- ( x = A -> F = F ) |
6 |
|
id |
|- ( x = A -> x = A ) |
7 |
|
eqidd |
|- ( x = A -> y = y ) |
8 |
5 6 7
|
aoveq123d |
|- ( x = A -> (( x F y )) = (( A F y )) ) |
9 |
8
|
eleq1d |
|- ( x = A -> ( (( x F y )) e. C <-> (( A F y )) e. C ) ) |
10 |
|
eqidd |
|- ( y = B -> F = F ) |
11 |
|
eqidd |
|- ( y = B -> A = A ) |
12 |
|
id |
|- ( y = B -> y = B ) |
13 |
10 11 12
|
aoveq123d |
|- ( y = B -> (( A F y )) = (( A F B )) ) |
14 |
13
|
eleq1d |
|- ( y = B -> ( (( A F y )) e. C <-> (( A F B )) e. C ) ) |
15 |
9 14
|
rspc2v |
|- ( ( A e. R /\ B e. S ) -> ( A. x e. R A. y e. S (( x F y )) e. C -> (( A F B )) e. C ) ) |
16 |
4 15
|
mpi |
|- ( ( A e. R /\ B e. S ) -> (( A F B )) e. C ) |