Metamath Proof Explorer


Theorem faovcl

Description: Closure law for an operation, analogous to fovcl . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypothesis faovcl.1 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶
Assertion faovcl ( ( 𝐴𝑅𝐵𝑆 ) → (( 𝐴 𝐹 𝐵 )) ∈ 𝐶 )

Proof

Step Hyp Ref Expression
1 faovcl.1 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶
2 ffnaov ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ↔ ( 𝐹 Fn ( 𝑅 × 𝑆 ) ∧ ∀ 𝑥𝑅𝑦𝑆 (( 𝑥 𝐹 𝑦 )) ∈ 𝐶 ) )
3 2 simprbi ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 → ∀ 𝑥𝑅𝑦𝑆 (( 𝑥 𝐹 𝑦 )) ∈ 𝐶 )
4 1 3 ax-mp 𝑥𝑅𝑦𝑆 (( 𝑥 𝐹 𝑦 )) ∈ 𝐶
5 eqidd ( 𝑥 = 𝐴𝐹 = 𝐹 )
6 id ( 𝑥 = 𝐴𝑥 = 𝐴 )
7 eqidd ( 𝑥 = 𝐴𝑦 = 𝑦 )
8 5 6 7 aoveq123d ( 𝑥 = 𝐴 → (( 𝑥 𝐹 𝑦 )) = (( 𝐴 𝐹 𝑦 )) )
9 8 eleq1d ( 𝑥 = 𝐴 → ( (( 𝑥 𝐹 𝑦 )) ∈ 𝐶 ↔ (( 𝐴 𝐹 𝑦 )) ∈ 𝐶 ) )
10 eqidd ( 𝑦 = 𝐵𝐹 = 𝐹 )
11 eqidd ( 𝑦 = 𝐵𝐴 = 𝐴 )
12 id ( 𝑦 = 𝐵𝑦 = 𝐵 )
13 10 11 12 aoveq123d ( 𝑦 = 𝐵 → (( 𝐴 𝐹 𝑦 )) = (( 𝐴 𝐹 𝐵 )) )
14 13 eleq1d ( 𝑦 = 𝐵 → ( (( 𝐴 𝐹 𝑦 )) ∈ 𝐶 ↔ (( 𝐴 𝐹 𝐵 )) ∈ 𝐶 ) )
15 9 14 rspc2v ( ( 𝐴𝑅𝐵𝑆 ) → ( ∀ 𝑥𝑅𝑦𝑆 (( 𝑥 𝐹 𝑦 )) ∈ 𝐶 → (( 𝐴 𝐹 𝐵 )) ∈ 𝐶 ) )
16 4 15 mpi ( ( 𝐴𝑅𝐵𝑆 ) → (( 𝐴 𝐹 𝐵 )) ∈ 𝐶 )