| Step | Hyp | Ref | Expression | 
						
							| 1 |  | faovcl.1 | ⊢ 𝐹 : ( 𝑅  ×  𝑆 ) ⟶ 𝐶 | 
						
							| 2 |  | ffnaov | ⊢ ( 𝐹 : ( 𝑅  ×  𝑆 ) ⟶ 𝐶  ↔  ( 𝐹  Fn  ( 𝑅  ×  𝑆 )  ∧  ∀ 𝑥  ∈  𝑅 ∀ 𝑦  ∈  𝑆  (( 𝑥 𝐹 𝑦 ))   ∈  𝐶 ) ) | 
						
							| 3 | 2 | simprbi | ⊢ ( 𝐹 : ( 𝑅  ×  𝑆 ) ⟶ 𝐶  →  ∀ 𝑥  ∈  𝑅 ∀ 𝑦  ∈  𝑆  (( 𝑥 𝐹 𝑦 ))   ∈  𝐶 ) | 
						
							| 4 | 1 3 | ax-mp | ⊢ ∀ 𝑥  ∈  𝑅 ∀ 𝑦  ∈  𝑆  (( 𝑥 𝐹 𝑦 ))   ∈  𝐶 | 
						
							| 5 |  | eqidd | ⊢ ( 𝑥  =  𝐴  →  𝐹  =  𝐹 ) | 
						
							| 6 |  | id | ⊢ ( 𝑥  =  𝐴  →  𝑥  =  𝐴 ) | 
						
							| 7 |  | eqidd | ⊢ ( 𝑥  =  𝐴  →  𝑦  =  𝑦 ) | 
						
							| 8 | 5 6 7 | aoveq123d | ⊢ ( 𝑥  =  𝐴  →   (( 𝑥 𝐹 𝑦 ))   =   (( 𝐴 𝐹 𝑦 ))  ) | 
						
							| 9 | 8 | eleq1d | ⊢ ( 𝑥  =  𝐴  →  (  (( 𝑥 𝐹 𝑦 ))   ∈  𝐶  ↔   (( 𝐴 𝐹 𝑦 ))   ∈  𝐶 ) ) | 
						
							| 10 |  | eqidd | ⊢ ( 𝑦  =  𝐵  →  𝐹  =  𝐹 ) | 
						
							| 11 |  | eqidd | ⊢ ( 𝑦  =  𝐵  →  𝐴  =  𝐴 ) | 
						
							| 12 |  | id | ⊢ ( 𝑦  =  𝐵  →  𝑦  =  𝐵 ) | 
						
							| 13 | 10 11 12 | aoveq123d | ⊢ ( 𝑦  =  𝐵  →   (( 𝐴 𝐹 𝑦 ))   =   (( 𝐴 𝐹 𝐵 ))  ) | 
						
							| 14 | 13 | eleq1d | ⊢ ( 𝑦  =  𝐵  →  (  (( 𝐴 𝐹 𝑦 ))   ∈  𝐶  ↔   (( 𝐴 𝐹 𝐵 ))   ∈  𝐶 ) ) | 
						
							| 15 | 9 14 | rspc2v | ⊢ ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆 )  →  ( ∀ 𝑥  ∈  𝑅 ∀ 𝑦  ∈  𝑆  (( 𝑥 𝐹 𝑦 ))   ∈  𝐶  →   (( 𝐴 𝐹 𝐵 ))   ∈  𝐶 ) ) | 
						
							| 16 | 4 15 | mpi | ⊢ ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆 )  →   (( 𝐴 𝐹 𝐵 ))   ∈  𝐶 ) |