Step |
Hyp |
Ref |
Expression |
1 |
|
faovcl.1 |
⊢ 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 |
2 |
|
ffnaov |
⊢ ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 ↔ ( 𝐹 Fn ( 𝑅 × 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 (( 𝑥 𝐹 𝑦 )) ∈ 𝐶 ) ) |
3 |
2
|
simprbi |
⊢ ( 𝐹 : ( 𝑅 × 𝑆 ) ⟶ 𝐶 → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 (( 𝑥 𝐹 𝑦 )) ∈ 𝐶 ) |
4 |
1 3
|
ax-mp |
⊢ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 (( 𝑥 𝐹 𝑦 )) ∈ 𝐶 |
5 |
|
eqidd |
⊢ ( 𝑥 = 𝐴 → 𝐹 = 𝐹 ) |
6 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
7 |
|
eqidd |
⊢ ( 𝑥 = 𝐴 → 𝑦 = 𝑦 ) |
8 |
5 6 7
|
aoveq123d |
⊢ ( 𝑥 = 𝐴 → (( 𝑥 𝐹 𝑦 )) = (( 𝐴 𝐹 𝑦 )) ) |
9 |
8
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( (( 𝑥 𝐹 𝑦 )) ∈ 𝐶 ↔ (( 𝐴 𝐹 𝑦 )) ∈ 𝐶 ) ) |
10 |
|
eqidd |
⊢ ( 𝑦 = 𝐵 → 𝐹 = 𝐹 ) |
11 |
|
eqidd |
⊢ ( 𝑦 = 𝐵 → 𝐴 = 𝐴 ) |
12 |
|
id |
⊢ ( 𝑦 = 𝐵 → 𝑦 = 𝐵 ) |
13 |
10 11 12
|
aoveq123d |
⊢ ( 𝑦 = 𝐵 → (( 𝐴 𝐹 𝑦 )) = (( 𝐴 𝐹 𝐵 )) ) |
14 |
13
|
eleq1d |
⊢ ( 𝑦 = 𝐵 → ( (( 𝐴 𝐹 𝑦 )) ∈ 𝐶 ↔ (( 𝐴 𝐹 𝐵 )) ∈ 𝐶 ) ) |
15 |
9 14
|
rspc2v |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 (( 𝑥 𝐹 𝑦 )) ∈ 𝐶 → (( 𝐴 𝐹 𝐵 )) ∈ 𝐶 ) ) |
16 |
4 15
|
mpi |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → (( 𝐴 𝐹 𝐵 )) ∈ 𝐶 ) |