Metamath Proof Explorer


Theorem aovmpt4g

Description: Value of a function given by the maps-to notation, analogous to ovmpt4g . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypothesis aovmpt4g.3 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
Assertion aovmpt4g ( ( 𝑥𝐴𝑦𝐵𝐶𝑉 ) → (( 𝑥 𝐹 𝑦 )) = 𝐶 )

Proof

Step Hyp Ref Expression
1 aovmpt4g.3 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
2 1 dmmpog ( 𝐶𝑉 → dom 𝐹 = ( 𝐴 × 𝐵 ) )
3 opelxpi ( ( 𝑥𝐴𝑦𝐵 ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐵 ) )
4 eleq2 ( dom 𝐹 = ( 𝐴 × 𝐵 ) → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ dom 𝐹 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐵 ) ) )
5 3 4 syl5ibr ( dom 𝐹 = ( 𝐴 × 𝐵 ) → ( ( 𝑥𝐴𝑦𝐵 ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ dom 𝐹 ) )
6 2 5 syl ( 𝐶𝑉 → ( ( 𝑥𝐴𝑦𝐵 ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ dom 𝐹 ) )
7 6 impcom ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝐶𝑉 ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ dom 𝐹 )
8 7 3impa ( ( 𝑥𝐴𝑦𝐵𝐶𝑉 ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ dom 𝐹 )
9 1 mpofun Fun 𝐹
10 funres ( Fun 𝐹 → Fun ( 𝐹 ↾ { ⟨ 𝑥 , 𝑦 ⟩ } ) )
11 9 10 ax-mp Fun ( 𝐹 ↾ { ⟨ 𝑥 , 𝑦 ⟩ } )
12 df-dfat ( 𝐹 defAt ⟨ 𝑥 , 𝑦 ⟩ ↔ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ⟨ 𝑥 , 𝑦 ⟩ } ) ) )
13 aovfundmoveq ( 𝐹 defAt ⟨ 𝑥 , 𝑦 ⟩ → (( 𝑥 𝐹 𝑦 )) = ( 𝑥 𝐹 𝑦 ) )
14 12 13 sylbir ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { ⟨ 𝑥 , 𝑦 ⟩ } ) ) → (( 𝑥 𝐹 𝑦 )) = ( 𝑥 𝐹 𝑦 ) )
15 8 11 14 sylancl ( ( 𝑥𝐴𝑦𝐵𝐶𝑉 ) → (( 𝑥 𝐹 𝑦 )) = ( 𝑥 𝐹 𝑦 ) )
16 1 ovmpt4g ( ( 𝑥𝐴𝑦𝐵𝐶𝑉 ) → ( 𝑥 𝐹 𝑦 ) = 𝐶 )
17 15 16 eqtrd ( ( 𝑥𝐴𝑦𝐵𝐶𝑉 ) → (( 𝑥 𝐹 𝑦 )) = 𝐶 )