Step |
Hyp |
Ref |
Expression |
1 |
|
aovmpt4g.3 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
2 |
1
|
dmmpog |
⊢ ( 𝐶 ∈ 𝑉 → dom 𝐹 = ( 𝐴 × 𝐵 ) ) |
3 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) |
4 |
|
eleq2 |
⊢ ( dom 𝐹 = ( 𝐴 × 𝐵 ) → ( 〈 𝑥 , 𝑦 〉 ∈ dom 𝐹 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) ) |
5 |
3 4
|
syl5ibr |
⊢ ( dom 𝐹 = ( 𝐴 × 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ dom 𝐹 ) ) |
6 |
2 5
|
syl |
⊢ ( 𝐶 ∈ 𝑉 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ dom 𝐹 ) ) |
7 |
6
|
impcom |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝐶 ∈ 𝑉 ) → 〈 𝑥 , 𝑦 〉 ∈ dom 𝐹 ) |
8 |
7
|
3impa |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → 〈 𝑥 , 𝑦 〉 ∈ dom 𝐹 ) |
9 |
1
|
mpofun |
⊢ Fun 𝐹 |
10 |
|
funres |
⊢ ( Fun 𝐹 → Fun ( 𝐹 ↾ { 〈 𝑥 , 𝑦 〉 } ) ) |
11 |
9 10
|
ax-mp |
⊢ Fun ( 𝐹 ↾ { 〈 𝑥 , 𝑦 〉 } ) |
12 |
|
df-dfat |
⊢ ( 𝐹 defAt 〈 𝑥 , 𝑦 〉 ↔ ( 〈 𝑥 , 𝑦 〉 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 〈 𝑥 , 𝑦 〉 } ) ) ) |
13 |
|
aovfundmoveq |
⊢ ( 𝐹 defAt 〈 𝑥 , 𝑦 〉 → (( 𝑥 𝐹 𝑦 )) = ( 𝑥 𝐹 𝑦 ) ) |
14 |
12 13
|
sylbir |
⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 〈 𝑥 , 𝑦 〉 } ) ) → (( 𝑥 𝐹 𝑦 )) = ( 𝑥 𝐹 𝑦 ) ) |
15 |
8 11 14
|
sylancl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → (( 𝑥 𝐹 𝑦 )) = ( 𝑥 𝐹 𝑦 ) ) |
16 |
1
|
ovmpt4g |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑥 𝐹 𝑦 ) = 𝐶 ) |
17 |
15 16
|
eqtrd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → (( 𝑥 𝐹 𝑦 )) = 𝐶 ) |