Metamath Proof Explorer


Theorem aovmpt4g

Description: Value of a function given by the maps-to notation, analogous to ovmpt4g . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypothesis aovmpt4g.3
|- F = ( x e. A , y e. B |-> C )
Assertion aovmpt4g
|- ( ( x e. A /\ y e. B /\ C e. V ) -> (( x F y )) = C )

Proof

Step Hyp Ref Expression
1 aovmpt4g.3
 |-  F = ( x e. A , y e. B |-> C )
2 1 dmmpog
 |-  ( C e. V -> dom F = ( A X. B ) )
3 opelxpi
 |-  ( ( x e. A /\ y e. B ) -> <. x , y >. e. ( A X. B ) )
4 eleq2
 |-  ( dom F = ( A X. B ) -> ( <. x , y >. e. dom F <-> <. x , y >. e. ( A X. B ) ) )
5 3 4 syl5ibr
 |-  ( dom F = ( A X. B ) -> ( ( x e. A /\ y e. B ) -> <. x , y >. e. dom F ) )
6 2 5 syl
 |-  ( C e. V -> ( ( x e. A /\ y e. B ) -> <. x , y >. e. dom F ) )
7 6 impcom
 |-  ( ( ( x e. A /\ y e. B ) /\ C e. V ) -> <. x , y >. e. dom F )
8 7 3impa
 |-  ( ( x e. A /\ y e. B /\ C e. V ) -> <. x , y >. e. dom F )
9 1 mpofun
 |-  Fun F
10 funres
 |-  ( Fun F -> Fun ( F |` { <. x , y >. } ) )
11 9 10 ax-mp
 |-  Fun ( F |` { <. x , y >. } )
12 df-dfat
 |-  ( F defAt <. x , y >. <-> ( <. x , y >. e. dom F /\ Fun ( F |` { <. x , y >. } ) ) )
13 aovfundmoveq
 |-  ( F defAt <. x , y >. -> (( x F y )) = ( x F y ) )
14 12 13 sylbir
 |-  ( ( <. x , y >. e. dom F /\ Fun ( F |` { <. x , y >. } ) ) -> (( x F y )) = ( x F y ) )
15 8 11 14 sylancl
 |-  ( ( x e. A /\ y e. B /\ C e. V ) -> (( x F y )) = ( x F y ) )
16 1 ovmpt4g
 |-  ( ( x e. A /\ y e. B /\ C e. V ) -> ( x F y ) = C )
17 15 16 eqtrd
 |-  ( ( x e. A /\ y e. B /\ C e. V ) -> (( x F y )) = C )