Metamath Proof Explorer


Theorem faovcl

Description: Closure law for an operation, analogous to fovcl . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypothesis faovcl.1 F:R×SC
Assertion faovcl ARBSAFBC

Proof

Step Hyp Ref Expression
1 faovcl.1 F:R×SC
2 ffnaov F:R×SCFFnR×SxRySxFyC
3 2 simprbi F:R×SCxRySxFyC
4 1 3 ax-mp xRySxFyC
5 eqidd x=AF=F
6 id x=Ax=A
7 eqidd x=Ay=y
8 5 6 7 aoveq123d x=AxFy=AFy
9 8 eleq1d x=AxFyCAFyC
10 eqidd y=BF=F
11 eqidd y=BA=A
12 id y=By=B
13 10 11 12 aoveq123d y=BAFy=AFB
14 13 eleq1d y=BAFyCAFBC
15 9 14 rspc2v ARBSxRySxFyCAFBC
16 4 15 mpi ARBSAFBC