| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ex |
|- (/) e. _V |
| 2 |
|
fival |
|- ( (/) e. _V -> ( fi ` (/) ) = { y | E. x e. ( ~P (/) i^i Fin ) y = |^| x } ) |
| 3 |
1 2
|
ax-mp |
|- ( fi ` (/) ) = { y | E. x e. ( ~P (/) i^i Fin ) y = |^| x } |
| 4 |
|
vprc |
|- -. _V e. _V |
| 5 |
|
id |
|- ( y = |^| x -> y = |^| x ) |
| 6 |
|
elinel1 |
|- ( x e. ( ~P (/) i^i Fin ) -> x e. ~P (/) ) |
| 7 |
|
elpwi |
|- ( x e. ~P (/) -> x C_ (/) ) |
| 8 |
|
ss0 |
|- ( x C_ (/) -> x = (/) ) |
| 9 |
6 7 8
|
3syl |
|- ( x e. ( ~P (/) i^i Fin ) -> x = (/) ) |
| 10 |
9
|
inteqd |
|- ( x e. ( ~P (/) i^i Fin ) -> |^| x = |^| (/) ) |
| 11 |
|
int0 |
|- |^| (/) = _V |
| 12 |
10 11
|
eqtrdi |
|- ( x e. ( ~P (/) i^i Fin ) -> |^| x = _V ) |
| 13 |
5 12
|
sylan9eqr |
|- ( ( x e. ( ~P (/) i^i Fin ) /\ y = |^| x ) -> y = _V ) |
| 14 |
13
|
rexlimiva |
|- ( E. x e. ( ~P (/) i^i Fin ) y = |^| x -> y = _V ) |
| 15 |
|
vex |
|- y e. _V |
| 16 |
14 15
|
eqeltrrdi |
|- ( E. x e. ( ~P (/) i^i Fin ) y = |^| x -> _V e. _V ) |
| 17 |
4 16
|
mto |
|- -. E. x e. ( ~P (/) i^i Fin ) y = |^| x |
| 18 |
17
|
abf |
|- { y | E. x e. ( ~P (/) i^i Fin ) y = |^| x } = (/) |
| 19 |
3 18
|
eqtri |
|- ( fi ` (/) ) = (/) |