Metamath Proof Explorer


Theorem fin1a2lem4

Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 7-Nov-2014)

Ref Expression
Hypothesis fin1a2lem.b
|- E = ( x e. _om |-> ( 2o .o x ) )
Assertion fin1a2lem4
|- E : _om -1-1-> _om

Proof

Step Hyp Ref Expression
1 fin1a2lem.b
 |-  E = ( x e. _om |-> ( 2o .o x ) )
2 2onn
 |-  2o e. _om
3 nnmcl
 |-  ( ( 2o e. _om /\ x e. _om ) -> ( 2o .o x ) e. _om )
4 2 3 mpan
 |-  ( x e. _om -> ( 2o .o x ) e. _om )
5 1 4 fmpti
 |-  E : _om --> _om
6 1 fin1a2lem3
 |-  ( a e. _om -> ( E ` a ) = ( 2o .o a ) )
7 1 fin1a2lem3
 |-  ( b e. _om -> ( E ` b ) = ( 2o .o b ) )
8 6 7 eqeqan12d
 |-  ( ( a e. _om /\ b e. _om ) -> ( ( E ` a ) = ( E ` b ) <-> ( 2o .o a ) = ( 2o .o b ) ) )
9 2on
 |-  2o e. On
10 9 a1i
 |-  ( ( a e. _om /\ b e. _om ) -> 2o e. On )
11 nnon
 |-  ( a e. _om -> a e. On )
12 11 adantr
 |-  ( ( a e. _om /\ b e. _om ) -> a e. On )
13 nnon
 |-  ( b e. _om -> b e. On )
14 13 adantl
 |-  ( ( a e. _om /\ b e. _om ) -> b e. On )
15 0lt1o
 |-  (/) e. 1o
16 elelsuc
 |-  ( (/) e. 1o -> (/) e. suc 1o )
17 15 16 ax-mp
 |-  (/) e. suc 1o
18 df-2o
 |-  2o = suc 1o
19 17 18 eleqtrri
 |-  (/) e. 2o
20 19 a1i
 |-  ( ( a e. _om /\ b e. _om ) -> (/) e. 2o )
21 omcan
 |-  ( ( ( 2o e. On /\ a e. On /\ b e. On ) /\ (/) e. 2o ) -> ( ( 2o .o a ) = ( 2o .o b ) <-> a = b ) )
22 10 12 14 20 21 syl31anc
 |-  ( ( a e. _om /\ b e. _om ) -> ( ( 2o .o a ) = ( 2o .o b ) <-> a = b ) )
23 8 22 bitrd
 |-  ( ( a e. _om /\ b e. _om ) -> ( ( E ` a ) = ( E ` b ) <-> a = b ) )
24 23 biimpd
 |-  ( ( a e. _om /\ b e. _om ) -> ( ( E ` a ) = ( E ` b ) -> a = b ) )
25 24 rgen2
 |-  A. a e. _om A. b e. _om ( ( E ` a ) = ( E ` b ) -> a = b )
26 dff13
 |-  ( E : _om -1-1-> _om <-> ( E : _om --> _om /\ A. a e. _om A. b e. _om ( ( E ` a ) = ( E ` b ) -> a = b ) ) )
27 5 25 26 mpbir2an
 |-  E : _om -1-1-> _om