Metamath Proof Explorer


Theorem fldsdrgfldext2

Description: A sub-sub-division-ring of a field forms a field extension. (Contributed by Thierry Arnoux, 19-Oct-2025)

Ref Expression
Hypotheses fldsdrgfldext.1
|- G = ( F |`s A )
fldsdrgfldext.2
|- ( ph -> F e. Field )
fldsdrgfldext.3
|- ( ph -> A e. ( SubDRing ` F ) )
fldsdrgfldext2.b
|- ( ph -> B e. ( SubDRing ` G ) )
fldsdrgfldext2.h
|- H = ( F |`s B )
Assertion fldsdrgfldext2
|- ( ph -> G /FldExt H )

Proof

Step Hyp Ref Expression
1 fldsdrgfldext.1
 |-  G = ( F |`s A )
2 fldsdrgfldext.2
 |-  ( ph -> F e. Field )
3 fldsdrgfldext.3
 |-  ( ph -> A e. ( SubDRing ` F ) )
4 fldsdrgfldext2.b
 |-  ( ph -> B e. ( SubDRing ` G ) )
5 fldsdrgfldext2.h
 |-  H = ( F |`s B )
6 eqid
 |-  ( G |`s B ) = ( G |`s B )
7 fldsdrgfld
 |-  ( ( F e. Field /\ A e. ( SubDRing ` F ) ) -> ( F |`s A ) e. Field )
8 2 3 7 syl2anc
 |-  ( ph -> ( F |`s A ) e. Field )
9 1 8 eqeltrid
 |-  ( ph -> G e. Field )
10 6 9 4 fldsdrgfldext
 |-  ( ph -> G /FldExt ( G |`s B ) )
11 eqid
 |-  ( Base ` G ) = ( Base ` G )
12 11 sdrgss
 |-  ( B e. ( SubDRing ` G ) -> B C_ ( Base ` G ) )
13 4 12 syl
 |-  ( ph -> B C_ ( Base ` G ) )
14 eqid
 |-  ( Base ` F ) = ( Base ` F )
15 14 sdrgss
 |-  ( A e. ( SubDRing ` F ) -> A C_ ( Base ` F ) )
16 1 14 ressbas2
 |-  ( A C_ ( Base ` F ) -> A = ( Base ` G ) )
17 3 15 16 3syl
 |-  ( ph -> A = ( Base ` G ) )
18 13 17 sseqtrrd
 |-  ( ph -> B C_ A )
19 ressabs
 |-  ( ( A e. ( SubDRing ` F ) /\ B C_ A ) -> ( ( F |`s A ) |`s B ) = ( F |`s B ) )
20 3 18 19 syl2anc
 |-  ( ph -> ( ( F |`s A ) |`s B ) = ( F |`s B ) )
21 1 oveq1i
 |-  ( G |`s B ) = ( ( F |`s A ) |`s B )
22 20 21 5 3eqtr4g
 |-  ( ph -> ( G |`s B ) = H )
23 10 22 breqtrd
 |-  ( ph -> G /FldExt H )