| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldsdrgfldext.1 |
|- G = ( F |`s A ) |
| 2 |
|
fldsdrgfldext.2 |
|- ( ph -> F e. Field ) |
| 3 |
|
fldsdrgfldext.3 |
|- ( ph -> A e. ( SubDRing ` F ) ) |
| 4 |
|
fldsdrgfld |
|- ( ( F e. Field /\ A e. ( SubDRing ` F ) ) -> ( F |`s A ) e. Field ) |
| 5 |
2 3 4
|
syl2anc |
|- ( ph -> ( F |`s A ) e. Field ) |
| 6 |
1 5
|
eqeltrid |
|- ( ph -> G e. Field ) |
| 7 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 8 |
7
|
sdrgss |
|- ( A e. ( SubDRing ` F ) -> A C_ ( Base ` F ) ) |
| 9 |
1 7
|
ressbas2 |
|- ( A C_ ( Base ` F ) -> A = ( Base ` G ) ) |
| 10 |
3 8 9
|
3syl |
|- ( ph -> A = ( Base ` G ) ) |
| 11 |
10
|
oveq2d |
|- ( ph -> ( F |`s A ) = ( F |`s ( Base ` G ) ) ) |
| 12 |
1 11
|
eqtrid |
|- ( ph -> G = ( F |`s ( Base ` G ) ) ) |
| 13 |
|
sdrgsubrg |
|- ( A e. ( SubDRing ` F ) -> A e. ( SubRing ` F ) ) |
| 14 |
3 13
|
syl |
|- ( ph -> A e. ( SubRing ` F ) ) |
| 15 |
10 14
|
eqeltrrd |
|- ( ph -> ( Base ` G ) e. ( SubRing ` F ) ) |
| 16 |
|
brfldext |
|- ( ( F e. Field /\ G e. Field ) -> ( F /FldExt G <-> ( G = ( F |`s ( Base ` G ) ) /\ ( Base ` G ) e. ( SubRing ` F ) ) ) ) |
| 17 |
16
|
biimpar |
|- ( ( ( F e. Field /\ G e. Field ) /\ ( G = ( F |`s ( Base ` G ) ) /\ ( Base ` G ) e. ( SubRing ` F ) ) ) -> F /FldExt G ) |
| 18 |
2 6 12 15 17
|
syl22anc |
|- ( ph -> F /FldExt G ) |