Metamath Proof Explorer


Theorem fldsdrgfldext

Description: A sub-division-ring of a field forms a field extension. (Contributed by Thierry Arnoux, 19-Oct-2025)

Ref Expression
Hypotheses fldsdrgfldext.1
|- G = ( F |`s A )
fldsdrgfldext.2
|- ( ph -> F e. Field )
fldsdrgfldext.3
|- ( ph -> A e. ( SubDRing ` F ) )
Assertion fldsdrgfldext
|- ( ph -> F /FldExt G )

Proof

Step Hyp Ref Expression
1 fldsdrgfldext.1
 |-  G = ( F |`s A )
2 fldsdrgfldext.2
 |-  ( ph -> F e. Field )
3 fldsdrgfldext.3
 |-  ( ph -> A e. ( SubDRing ` F ) )
4 fldsdrgfld
 |-  ( ( F e. Field /\ A e. ( SubDRing ` F ) ) -> ( F |`s A ) e. Field )
5 2 3 4 syl2anc
 |-  ( ph -> ( F |`s A ) e. Field )
6 1 5 eqeltrid
 |-  ( ph -> G e. Field )
7 eqid
 |-  ( Base ` F ) = ( Base ` F )
8 7 sdrgss
 |-  ( A e. ( SubDRing ` F ) -> A C_ ( Base ` F ) )
9 1 7 ressbas2
 |-  ( A C_ ( Base ` F ) -> A = ( Base ` G ) )
10 3 8 9 3syl
 |-  ( ph -> A = ( Base ` G ) )
11 10 oveq2d
 |-  ( ph -> ( F |`s A ) = ( F |`s ( Base ` G ) ) )
12 1 11 eqtrid
 |-  ( ph -> G = ( F |`s ( Base ` G ) ) )
13 sdrgsubrg
 |-  ( A e. ( SubDRing ` F ) -> A e. ( SubRing ` F ) )
14 3 13 syl
 |-  ( ph -> A e. ( SubRing ` F ) )
15 10 14 eqeltrrd
 |-  ( ph -> ( Base ` G ) e. ( SubRing ` F ) )
16 brfldext
 |-  ( ( F e. Field /\ G e. Field ) -> ( F /FldExt G <-> ( G = ( F |`s ( Base ` G ) ) /\ ( Base ` G ) e. ( SubRing ` F ) ) ) )
17 16 biimpar
 |-  ( ( ( F e. Field /\ G e. Field ) /\ ( G = ( F |`s ( Base ` G ) ) /\ ( Base ` G ) e. ( SubRing ` F ) ) ) -> F /FldExt G )
18 2 6 12 15 17 syl22anc
 |-  ( ph -> F /FldExt G )