| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldsdrgfldext.1 |
⊢ 𝐺 = ( 𝐹 ↾s 𝐴 ) |
| 2 |
|
fldsdrgfldext.2 |
⊢ ( 𝜑 → 𝐹 ∈ Field ) |
| 3 |
|
fldsdrgfldext.3 |
⊢ ( 𝜑 → 𝐴 ∈ ( SubDRing ‘ 𝐹 ) ) |
| 4 |
|
fldsdrgfld |
⊢ ( ( 𝐹 ∈ Field ∧ 𝐴 ∈ ( SubDRing ‘ 𝐹 ) ) → ( 𝐹 ↾s 𝐴 ) ∈ Field ) |
| 5 |
2 3 4
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ↾s 𝐴 ) ∈ Field ) |
| 6 |
1 5
|
eqeltrid |
⊢ ( 𝜑 → 𝐺 ∈ Field ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 8 |
7
|
sdrgss |
⊢ ( 𝐴 ∈ ( SubDRing ‘ 𝐹 ) → 𝐴 ⊆ ( Base ‘ 𝐹 ) ) |
| 9 |
1 7
|
ressbas2 |
⊢ ( 𝐴 ⊆ ( Base ‘ 𝐹 ) → 𝐴 = ( Base ‘ 𝐺 ) ) |
| 10 |
3 8 9
|
3syl |
⊢ ( 𝜑 → 𝐴 = ( Base ‘ 𝐺 ) ) |
| 11 |
10
|
oveq2d |
⊢ ( 𝜑 → ( 𝐹 ↾s 𝐴 ) = ( 𝐹 ↾s ( Base ‘ 𝐺 ) ) ) |
| 12 |
1 11
|
eqtrid |
⊢ ( 𝜑 → 𝐺 = ( 𝐹 ↾s ( Base ‘ 𝐺 ) ) ) |
| 13 |
|
sdrgsubrg |
⊢ ( 𝐴 ∈ ( SubDRing ‘ 𝐹 ) → 𝐴 ∈ ( SubRing ‘ 𝐹 ) ) |
| 14 |
3 13
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ( SubRing ‘ 𝐹 ) ) |
| 15 |
10 14
|
eqeltrrd |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) ∈ ( SubRing ‘ 𝐹 ) ) |
| 16 |
|
brfldext |
⊢ ( ( 𝐹 ∈ Field ∧ 𝐺 ∈ Field ) → ( 𝐹 /FldExt 𝐺 ↔ ( 𝐺 = ( 𝐹 ↾s ( Base ‘ 𝐺 ) ) ∧ ( Base ‘ 𝐺 ) ∈ ( SubRing ‘ 𝐹 ) ) ) ) |
| 17 |
16
|
biimpar |
⊢ ( ( ( 𝐹 ∈ Field ∧ 𝐺 ∈ Field ) ∧ ( 𝐺 = ( 𝐹 ↾s ( Base ‘ 𝐺 ) ) ∧ ( Base ‘ 𝐺 ) ∈ ( SubRing ‘ 𝐹 ) ) ) → 𝐹 /FldExt 𝐺 ) |
| 18 |
2 6 12 15 17
|
syl22anc |
⊢ ( 𝜑 → 𝐹 /FldExt 𝐺 ) |